中国四川盆地中部贡山庙西部大安寨组致密油高产的地质特征及主要控制因素

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS Geomechanics and Geophysics for Geo-Energy and Geo-Resources Pub Date : 2024-04-01 DOI:10.1007/s40948-024-00783-9
Cunhui Fan, Shan Nie, Hu Li, Qingchuan Pan, Xiangchao Shi, Sumei Qin, Minzhi Zhang, Zongheng Yang
{"title":"中国四川盆地中部贡山庙西部大安寨组致密油高产的地质特征及主要控制因素","authors":"Cunhui Fan, Shan Nie, Hu Li, Qingchuan Pan, Xiangchao Shi, Sumei Qin, Minzhi Zhang, Zongheng Yang","doi":"10.1007/s40948-024-00783-9","DOIUrl":null,"url":null,"abstract":"<p>The Da’anzhai Member limestone in the central Sichuan Basin holds significant importance as a tight oil-producing formation. Despite its crucial role, the intricate patterns of hydrocarbon enrichment and the elusive geological factors dictating high-yield production have impeded tight oil exploration and development in the Sichuan Basin. This study delves into the geological characteristics of tight oil and identifies key factors influencing high-yield production, utilizing comprehensive data derived from cores, thin sections, well logging, seismic studies, and production tests of the Da’anzhai Member in the western Gongshanmiao within the central Sichuan Basin. Our findings reveal that the primary productive strata for tight oil are the Da 1 (1st Submember of the Da’anzhai Member) and Da 3 (3rd Submember of the Da’anzhai Member) Submembers, characterized by high-energy and low-energy shell beach microfacies. The kerogen type is sapropelic, ranging from mature to highly mature, positioning it as a moderately good hydrocarbon source rock. The predominant lithology of the reservoir consists of coquina and argillaceous coquina, with secondary dissolved pores, fractures, and nano-scale micropores serving as the predominant reservoir spaces. The overall lithology represents a dense limestone reservoir of the pore-fracture type, featuring low porosity and permeability. Critical controlling factors for achieving high-yield production of tight oil encompass lithological composition, fracture development, tectonic position, and source-reservoir configuration. Notably, substantial coquina thickness, fracture development, and the strategic relationship between the lower reservoir and upper source rocks contribute significantly to unlocking high tight oil yields. Additionally, thin-layer coquina emerges as a potential area for realizing increased oil and gas production capacity during later stages of development. This comprehensive analysis sheds light on the intricate dynamics governing tight oil production in the Da’anzhai Member, offering valuable insights for advancing exploration and development strategies in the Sichuan Basin.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"3 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geological characteristics and major factors controlling the high yield of tight oil in the Da’anzhai member of the western Gongshanmiao in the central Sichuan basin, China\",\"authors\":\"Cunhui Fan, Shan Nie, Hu Li, Qingchuan Pan, Xiangchao Shi, Sumei Qin, Minzhi Zhang, Zongheng Yang\",\"doi\":\"10.1007/s40948-024-00783-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Da’anzhai Member limestone in the central Sichuan Basin holds significant importance as a tight oil-producing formation. Despite its crucial role, the intricate patterns of hydrocarbon enrichment and the elusive geological factors dictating high-yield production have impeded tight oil exploration and development in the Sichuan Basin. This study delves into the geological characteristics of tight oil and identifies key factors influencing high-yield production, utilizing comprehensive data derived from cores, thin sections, well logging, seismic studies, and production tests of the Da’anzhai Member in the western Gongshanmiao within the central Sichuan Basin. Our findings reveal that the primary productive strata for tight oil are the Da 1 (1st Submember of the Da’anzhai Member) and Da 3 (3rd Submember of the Da’anzhai Member) Submembers, characterized by high-energy and low-energy shell beach microfacies. The kerogen type is sapropelic, ranging from mature to highly mature, positioning it as a moderately good hydrocarbon source rock. The predominant lithology of the reservoir consists of coquina and argillaceous coquina, with secondary dissolved pores, fractures, and nano-scale micropores serving as the predominant reservoir spaces. The overall lithology represents a dense limestone reservoir of the pore-fracture type, featuring low porosity and permeability. Critical controlling factors for achieving high-yield production of tight oil encompass lithological composition, fracture development, tectonic position, and source-reservoir configuration. Notably, substantial coquina thickness, fracture development, and the strategic relationship between the lower reservoir and upper source rocks contribute significantly to unlocking high tight oil yields. Additionally, thin-layer coquina emerges as a potential area for realizing increased oil and gas production capacity during later stages of development. This comprehensive analysis sheds light on the intricate dynamics governing tight oil production in the Da’anzhai Member, offering valuable insights for advancing exploration and development strategies in the Sichuan Basin.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00783-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00783-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

四川盆地中部的大安寨成员石灰岩作为致密油生产层具有重要意义。尽管致密油具有举足轻重的作用,但其错综复杂的烃类富集模式和难以捉摸的决定高产的地质因素阻碍了四川盆地致密油的勘探和开发。本研究利用四川盆地中部贡山庙西部大安寨组岩心、薄断面、测井、地震研究和生产试验等综合数据,深入研究致密油的地质特征,并找出影响高产的关键因素。我们的研究结果表明,致密油的主要产层是大1(大安寨系第1亚元)和大3(大安寨系第3亚元)亚元,其特征是高能和低能贝壳滩微地层。角质类型为溶蚀型,从成熟到高度成熟不等,使其成为中度良好的烃源岩。储层的主要岩性由鹅卵石和箭状鹅卵石组成,次生溶蚀孔隙、裂缝和纳米级微孔是储层的主要空间。整体岩性为孔隙-裂缝型致密石灰岩储层,孔隙度和渗透率均较低。实现致密油高产的关键控制因素包括岩性组成、断裂发育、构造位置以及源-储层构造。值得注意的是,大量的胶结岩厚度、断裂发育以及下部储层与上部源岩之间的战略关系,都对致密油的高产做出了重要贡献。此外,在后期开发阶段,薄层胶结岩也是提高油气产能的潜在领域。这项综合分析揭示了大安寨成员致密油生产的复杂动态,为推进四川盆地的勘探和开发战略提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geological characteristics and major factors controlling the high yield of tight oil in the Da’anzhai member of the western Gongshanmiao in the central Sichuan basin, China

The Da’anzhai Member limestone in the central Sichuan Basin holds significant importance as a tight oil-producing formation. Despite its crucial role, the intricate patterns of hydrocarbon enrichment and the elusive geological factors dictating high-yield production have impeded tight oil exploration and development in the Sichuan Basin. This study delves into the geological characteristics of tight oil and identifies key factors influencing high-yield production, utilizing comprehensive data derived from cores, thin sections, well logging, seismic studies, and production tests of the Da’anzhai Member in the western Gongshanmiao within the central Sichuan Basin. Our findings reveal that the primary productive strata for tight oil are the Da 1 (1st Submember of the Da’anzhai Member) and Da 3 (3rd Submember of the Da’anzhai Member) Submembers, characterized by high-energy and low-energy shell beach microfacies. The kerogen type is sapropelic, ranging from mature to highly mature, positioning it as a moderately good hydrocarbon source rock. The predominant lithology of the reservoir consists of coquina and argillaceous coquina, with secondary dissolved pores, fractures, and nano-scale micropores serving as the predominant reservoir spaces. The overall lithology represents a dense limestone reservoir of the pore-fracture type, featuring low porosity and permeability. Critical controlling factors for achieving high-yield production of tight oil encompass lithological composition, fracture development, tectonic position, and source-reservoir configuration. Notably, substantial coquina thickness, fracture development, and the strategic relationship between the lower reservoir and upper source rocks contribute significantly to unlocking high tight oil yields. Additionally, thin-layer coquina emerges as a potential area for realizing increased oil and gas production capacity during later stages of development. This comprehensive analysis sheds light on the intricate dynamics governing tight oil production in the Da’anzhai Member, offering valuable insights for advancing exploration and development strategies in the Sichuan Basin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
期刊最新文献
Numerical analysis of the influence of quartz crystal anisotropy on the thermal–mechanical coupling behavior of monomineral quartzite Failure analysis of Nehbandan granite under various stress states and strain rates using a calibrated Riedel–Hiermaier–Thoma constitutive model Fracture propagation characteristics of layered shale oil reservoirs with dense laminas under cyclic pressure shock fracturing Numerical simulation of hydraulic fracture propagation from recompletion in refracturing with dynamic stress modeling Criterion for hydraulic fracture propagation behaviour at coal measure composite reservoir interface based on energy release rate theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1