N. N. Resnina, S. P. Belyaev, V. A. Andreev, I. V. Ponikarova
{"title":"使用硬球和软球模型评估 B2 高熵形状记忆合金的晶格畸变","authors":"N. N. Resnina, S. P. Belyaev, V. A. Andreev, I. V. Ponikarova","doi":"10.1134/S1029959924020024","DOIUrl":null,"url":null,"abstract":"<p>This paper considers the application of two known models for the evaluation of distortion in high entropy shape memory alloys with the B2 structure. Distortion was calculated using the hard sphere and soft sphere models for binary TiNi and senary Ti-Hf-Zr-Ni-Cu-Co alloys with different chemical composition. It was shown that both models could not be used because they gave a high distortion value even for binary Ti<sub>49</sub>Ni<sub>51</sub> alloy. Distortion was so large for all alloys that they must be amorphous. However, this contradicted the experimental data according to which all alloys were crystalline with the B2 structure. A modification of both models was proposed taking into account that the TiNi alloy is an intermetallic compound. The formation of intermetallic compound was accompanied by a change in the spatial distribution of electron density around the nuclei of interacting atoms, which led to a change in the atomic sizes. The proposed modification gave the distortion value that was consistent with the lattice stability criterion for alloys where the concentration of each alloying element did not exceed 5 at %.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 2","pages":"124 - 132"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Hard and Soft Sphere Models for the Evaluation of Lattice Distortion in B2 High-Entropy Shape Memory Alloys\",\"authors\":\"N. N. Resnina, S. P. Belyaev, V. A. Andreev, I. V. Ponikarova\",\"doi\":\"10.1134/S1029959924020024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers the application of two known models for the evaluation of distortion in high entropy shape memory alloys with the B2 structure. Distortion was calculated using the hard sphere and soft sphere models for binary TiNi and senary Ti-Hf-Zr-Ni-Cu-Co alloys with different chemical composition. It was shown that both models could not be used because they gave a high distortion value even for binary Ti<sub>49</sub>Ni<sub>51</sub> alloy. Distortion was so large for all alloys that they must be amorphous. However, this contradicted the experimental data according to which all alloys were crystalline with the B2 structure. A modification of both models was proposed taking into account that the TiNi alloy is an intermetallic compound. The formation of intermetallic compound was accompanied by a change in the spatial distribution of electron density around the nuclei of interacting atoms, which led to a change in the atomic sizes. The proposed modification gave the distortion value that was consistent with the lattice stability criterion for alloys where the concentration of each alloying element did not exceed 5 at %.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"27 2\",\"pages\":\"124 - 132\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924020024\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924020024","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
The Use of Hard and Soft Sphere Models for the Evaluation of Lattice Distortion in B2 High-Entropy Shape Memory Alloys
This paper considers the application of two known models for the evaluation of distortion in high entropy shape memory alloys with the B2 structure. Distortion was calculated using the hard sphere and soft sphere models for binary TiNi and senary Ti-Hf-Zr-Ni-Cu-Co alloys with different chemical composition. It was shown that both models could not be used because they gave a high distortion value even for binary Ti49Ni51 alloy. Distortion was so large for all alloys that they must be amorphous. However, this contradicted the experimental data according to which all alloys were crystalline with the B2 structure. A modification of both models was proposed taking into account that the TiNi alloy is an intermetallic compound. The formation of intermetallic compound was accompanied by a change in the spatial distribution of electron density around the nuclei of interacting atoms, which led to a change in the atomic sizes. The proposed modification gave the distortion value that was consistent with the lattice stability criterion for alloys where the concentration of each alloying element did not exceed 5 at %.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.