Yang Li, Maliha R. Imami, Linmei Zhao, Alireza Amindarolzarbi, Esther Mena, Jeffrey Leal, Junyu Chen, Andrei Gafita, Andrew F. Voter, Xin Li, Yong Du, Chengzhang Zhu, Peter L. Choyke, Beiji Zou, Zhicheng Jiao, Steven P. Rowe, Martin G. Pomper, Harrison X. Bai
{"title":"基于深度学习的自动框架:前列腺癌患者 PSMA PET/CT 成像的摄取分割与分类","authors":"Yang Li, Maliha R. Imami, Linmei Zhao, Alireza Amindarolzarbi, Esther Mena, Jeffrey Leal, Junyu Chen, Andrei Gafita, Andrew F. Voter, Xin Li, Yong Du, Chengzhang Zhu, Peter L. Choyke, Beiji Zou, Zhicheng Jiao, Steven P. Rowe, Martin G. Pomper, Harrison X. Bai","doi":"10.1007/s10278-024-01104-y","DOIUrl":null,"url":null,"abstract":"<p>Uptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [<sup>18</sup>F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [<sup>18</sup>F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing. Two radiologists segmented and labelled foci as suspicious or non-suspicious for malignancy. A DL-based segmentation was developed with two independent CNNs. An anatomical prior guidance was applied to make the DL framework focus on PSMA-avid lesions. Segmentation performance was evaluated by Dice, IoU, precision, and recall. Classification model was constructed with multi-modal decision fusion framework evaluated by accuracy, AUC, F1 score, precision, and recall. Automatic segmentation of suspicious lesions was improved under prior guidance, with mean Dice, IoU, precision, and recall of 0.700, 0.566, 0.809, and 0.660 on the internal test set and 0.680, 0.548, 0.749, and 0.740 on the external test set. Our multi-modal decision fusion framework outperformed single-modal and multi-modal CNNs with accuracy, AUC, F1 score, precision, and recall of 0.764, 0.863, 0.844, 0.841, and 0.847 in distinguishing suspicious and non-suspicious foci on the internal test set and 0.796, 0.851, 0.865, 0.814, and 0.923 on the external test set. DL-based lesion segmentation on PSMA PET is facilitated through our anatomical prior guidance strategy. Our classification framework differentiates suspicious foci from those not suspicious for cancer with good accuracy.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"89 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer\",\"authors\":\"Yang Li, Maliha R. Imami, Linmei Zhao, Alireza Amindarolzarbi, Esther Mena, Jeffrey Leal, Junyu Chen, Andrei Gafita, Andrew F. Voter, Xin Li, Yong Du, Chengzhang Zhu, Peter L. Choyke, Beiji Zou, Zhicheng Jiao, Steven P. Rowe, Martin G. Pomper, Harrison X. Bai\",\"doi\":\"10.1007/s10278-024-01104-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Uptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [<sup>18</sup>F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [<sup>18</sup>F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing. Two radiologists segmented and labelled foci as suspicious or non-suspicious for malignancy. A DL-based segmentation was developed with two independent CNNs. An anatomical prior guidance was applied to make the DL framework focus on PSMA-avid lesions. Segmentation performance was evaluated by Dice, IoU, precision, and recall. Classification model was constructed with multi-modal decision fusion framework evaluated by accuracy, AUC, F1 score, precision, and recall. Automatic segmentation of suspicious lesions was improved under prior guidance, with mean Dice, IoU, precision, and recall of 0.700, 0.566, 0.809, and 0.660 on the internal test set and 0.680, 0.548, 0.749, and 0.740 on the external test set. Our multi-modal decision fusion framework outperformed single-modal and multi-modal CNNs with accuracy, AUC, F1 score, precision, and recall of 0.764, 0.863, 0.844, 0.841, and 0.847 in distinguishing suspicious and non-suspicious foci on the internal test set and 0.796, 0.851, 0.865, 0.814, and 0.923 on the external test set. DL-based lesion segmentation on PSMA PET is facilitated through our anatomical prior guidance strategy. Our classification framework differentiates suspicious foci from those not suspicious for cancer with good accuracy.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01104-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01104-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer
Uptake segmentation and classification on PSMA PET/CT are important for automating whole-body tumor burden determinations. We developed and evaluated an automated deep learning (DL)-based framework that segments and classifies uptake on PSMA PET/CT. We identified 193 [18F] DCFPyL PET/CT scans of patients with biochemically recurrent prostate cancer from two institutions, including 137 [18F] DCFPyL PET/CT scans for training and internally testing, and 56 scans from another institution for external testing. Two radiologists segmented and labelled foci as suspicious or non-suspicious for malignancy. A DL-based segmentation was developed with two independent CNNs. An anatomical prior guidance was applied to make the DL framework focus on PSMA-avid lesions. Segmentation performance was evaluated by Dice, IoU, precision, and recall. Classification model was constructed with multi-modal decision fusion framework evaluated by accuracy, AUC, F1 score, precision, and recall. Automatic segmentation of suspicious lesions was improved under prior guidance, with mean Dice, IoU, precision, and recall of 0.700, 0.566, 0.809, and 0.660 on the internal test set and 0.680, 0.548, 0.749, and 0.740 on the external test set. Our multi-modal decision fusion framework outperformed single-modal and multi-modal CNNs with accuracy, AUC, F1 score, precision, and recall of 0.764, 0.863, 0.844, 0.841, and 0.847 in distinguishing suspicious and non-suspicious foci on the internal test set and 0.796, 0.851, 0.865, 0.814, and 0.923 on the external test set. DL-based lesion segmentation on PSMA PET is facilitated through our anatomical prior guidance strategy. Our classification framework differentiates suspicious foci from those not suspicious for cancer with good accuracy.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.