细颗粒与流化技术相结合的应用综述

Yue Song, Yue Yuan, Jesse Zhu
{"title":"细颗粒与流化技术相结合的应用综述","authors":"Yue Song, Yue Yuan, Jesse Zhu","doi":"10.1002/cjce.25260","DOIUrl":null,"url":null,"abstract":"Fine particles possess remarkable characteristics including extensive surface-to-weight ratios and diverse morphologies. Consequently, through the use of fluidization techniques, they have become favoured in various industrial processes, especially with continuous production. This review paper offers a comprehensive exploration of the integration of fine particle applications with fluidization technologies, with a specific focus on the Geldart Group C particles sized <25–40 μm. Although there are challenges with processing fine particles such as the strong cohesion in fluidized beds, recent progress, including the nanoparticle modulation method, has demonstrated potential solutions. These advancements render these cohesive particles applicable to industrial applications in different fields, including gas-phase catalytic reactions, gas–solid fluidized bed coal beneficiation, ultrafine powder coating (UPC), pharmaceuticals, environmental sustainability, energy storage, and food processing. However, further research is needed to obtain a better understanding of fine particle fluidization in industrial settings in order to achieve larger-scale implementation. In summary, this review provides a comprehensive overview of fine particle utilization integrated with fluidization technologies, demonstrating the potential in large-scale industrial processes, and enabling significant advancements in practical applications.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on applications of fine particles integrated with fluidization technologies\",\"authors\":\"Yue Song, Yue Yuan, Jesse Zhu\",\"doi\":\"10.1002/cjce.25260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine particles possess remarkable characteristics including extensive surface-to-weight ratios and diverse morphologies. Consequently, through the use of fluidization techniques, they have become favoured in various industrial processes, especially with continuous production. This review paper offers a comprehensive exploration of the integration of fine particle applications with fluidization technologies, with a specific focus on the Geldart Group C particles sized <25–40 μm. Although there are challenges with processing fine particles such as the strong cohesion in fluidized beds, recent progress, including the nanoparticle modulation method, has demonstrated potential solutions. These advancements render these cohesive particles applicable to industrial applications in different fields, including gas-phase catalytic reactions, gas–solid fluidized bed coal beneficiation, ultrafine powder coating (UPC), pharmaceuticals, environmental sustainability, energy storage, and food processing. However, further research is needed to obtain a better understanding of fine particle fluidization in industrial settings in order to achieve larger-scale implementation. In summary, this review provides a comprehensive overview of fine particle utilization integrated with fluidization technologies, demonstrating the potential in large-scale industrial processes, and enabling significant advancements in practical applications.\",\"PeriodicalId\":501204,\"journal\":{\"name\":\"The Canadian Journal of Chemical Engineering\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cjce.25260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细颗粒具有显著的特性,包括广泛的表面重量比和多样化的形态。因此,通过使用流化技术,它们在各种工业流程中,尤其是在连续生产中受到青睐。本综述论文全面探讨了细颗粒应用与流化技术的结合,重点关注尺寸为 25-40 μm 的 Geldart C 组颗粒。尽管在处理细颗粒方面存在挑战,例如流化床中的强内聚力,但包括纳米颗粒调制方法在内的最新进展已经证明了潜在的解决方案。这些进步使这些内聚微粒适用于不同领域的工业应用,包括气相催化反应、气固流化床选煤、超细粉末涂层(UPC)、制药、环境可持续发展、能源储存和食品加工。然而,为了更好地了解工业环境中的细颗粒流化,以实现更大规模的实施,还需要进一步的研究。总之,本综述全面概述了与流化技术相结合的细颗粒利用技术,展示了其在大规模工业流程中的潜力,并在实际应用中取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on applications of fine particles integrated with fluidization technologies
Fine particles possess remarkable characteristics including extensive surface-to-weight ratios and diverse morphologies. Consequently, through the use of fluidization techniques, they have become favoured in various industrial processes, especially with continuous production. This review paper offers a comprehensive exploration of the integration of fine particle applications with fluidization technologies, with a specific focus on the Geldart Group C particles sized <25–40 μm. Although there are challenges with processing fine particles such as the strong cohesion in fluidized beds, recent progress, including the nanoparticle modulation method, has demonstrated potential solutions. These advancements render these cohesive particles applicable to industrial applications in different fields, including gas-phase catalytic reactions, gas–solid fluidized bed coal beneficiation, ultrafine powder coating (UPC), pharmaceuticals, environmental sustainability, energy storage, and food processing. However, further research is needed to obtain a better understanding of fine particle fluidization in industrial settings in order to achieve larger-scale implementation. In summary, this review provides a comprehensive overview of fine particle utilization integrated with fluidization technologies, demonstrating the potential in large-scale industrial processes, and enabling significant advancements in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent design of nerve guidance conduits: An artificial intelligence‐driven fluid structure interaction study on modelling and optimization of nerve growth Synergistic effect of alcohol polyoxyethylene ether sodium sulphate and copper foam on methane hydrate formation Effect of the main components in gasification wastewater on the surface properties of coal water slurry Global dynamic features and information of adjacent hidden layer enhancement based on autoencoder for industrial process soft sensor application Computational modelling and optimization of physicochemical absorption of CO2 in rotating packed bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1