{"title":"StepNet:用于孤立手语识别的时空部分感知网络","authors":"Xiaolong Shen, Zhedong Zheng, Yi Yang","doi":"10.1145/3656046","DOIUrl":null,"url":null,"abstract":"<p>The goal of sign language recognition (SLR) is to help those who are hard of hearing or deaf overcome the communication barrier. Most existing approaches can be typically divided into two lines, <i>i.e.</i>, Skeleton-based and RGB-based methods, but both the two lines of methods have their limitations. Skeleton-based methods do not consider facial expressions, while RGB-based approaches usually ignore the fine-grained hand structure. To overcome both limitations, we propose a new framework called Spatial-temporal Part-aware network (StepNet), based on RGB parts. As its name suggests, it is made up of two modules: Part-level Spatial Modeling and Part-level Temporal Modeling. Part-level Spatial Modeling, in particular, automatically captures the appearance-based properties, such as hands and faces, in the feature space without the use of any keypoint-level annotations. On the other hand, Part-level Temporal Modeling implicitly mines the long-short term context to capture the relevant attributes over time. Extensive experiments demonstrate that our StepNet, thanks to spatial-temporal modules, achieves competitive Top-1 Per-instance accuracy on three commonly-used SLR benchmarks, <i>i.e.</i>, 56.89% on WLASL, 77.2% on NMFs-CSL, and 77.1% on BOBSL. Additionally, the proposed method is compatible with the optical flow input and can produce superior performance if fused. For those who are hard of hearing, we hope that our work can act as a preliminary step.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"31 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"StepNet: Spatial-temporal Part-aware Network for Isolated Sign Language Recognition\",\"authors\":\"Xiaolong Shen, Zhedong Zheng, Yi Yang\",\"doi\":\"10.1145/3656046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of sign language recognition (SLR) is to help those who are hard of hearing or deaf overcome the communication barrier. Most existing approaches can be typically divided into two lines, <i>i.e.</i>, Skeleton-based and RGB-based methods, but both the two lines of methods have their limitations. Skeleton-based methods do not consider facial expressions, while RGB-based approaches usually ignore the fine-grained hand structure. To overcome both limitations, we propose a new framework called Spatial-temporal Part-aware network (StepNet), based on RGB parts. As its name suggests, it is made up of two modules: Part-level Spatial Modeling and Part-level Temporal Modeling. Part-level Spatial Modeling, in particular, automatically captures the appearance-based properties, such as hands and faces, in the feature space without the use of any keypoint-level annotations. On the other hand, Part-level Temporal Modeling implicitly mines the long-short term context to capture the relevant attributes over time. Extensive experiments demonstrate that our StepNet, thanks to spatial-temporal modules, achieves competitive Top-1 Per-instance accuracy on three commonly-used SLR benchmarks, <i>i.e.</i>, 56.89% on WLASL, 77.2% on NMFs-CSL, and 77.1% on BOBSL. Additionally, the proposed method is compatible with the optical flow input and can produce superior performance if fused. For those who are hard of hearing, we hope that our work can act as a preliminary step.</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656046\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656046","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
StepNet: Spatial-temporal Part-aware Network for Isolated Sign Language Recognition
The goal of sign language recognition (SLR) is to help those who are hard of hearing or deaf overcome the communication barrier. Most existing approaches can be typically divided into two lines, i.e., Skeleton-based and RGB-based methods, but both the two lines of methods have their limitations. Skeleton-based methods do not consider facial expressions, while RGB-based approaches usually ignore the fine-grained hand structure. To overcome both limitations, we propose a new framework called Spatial-temporal Part-aware network (StepNet), based on RGB parts. As its name suggests, it is made up of two modules: Part-level Spatial Modeling and Part-level Temporal Modeling. Part-level Spatial Modeling, in particular, automatically captures the appearance-based properties, such as hands and faces, in the feature space without the use of any keypoint-level annotations. On the other hand, Part-level Temporal Modeling implicitly mines the long-short term context to capture the relevant attributes over time. Extensive experiments demonstrate that our StepNet, thanks to spatial-temporal modules, achieves competitive Top-1 Per-instance accuracy on three commonly-used SLR benchmarks, i.e., 56.89% on WLASL, 77.2% on NMFs-CSL, and 77.1% on BOBSL. Additionally, the proposed method is compatible with the optical flow input and can produce superior performance if fused. For those who are hard of hearing, we hope that our work can act as a preliminary step.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.