带有 Unet3+ 和 EfficientNet 的 Segnet:利用三维核磁共振成像脑图像,通过基于多尺度注意力的深度学习技术和混合启发式改进,建立脑肿瘤分割和分类模型的新型框架

Ramya D, Lakshmi C
{"title":"带有 Unet3+ 和 EfficientNet 的 Segnet:利用三维核磁共振成像脑图像,通过基于多尺度注意力的深度学习技术和混合启发式改进,建立脑肿瘤分割和分类模型的新型框架","authors":"Ramya D, Lakshmi C","doi":"10.1080/13682199.2023.2283678","DOIUrl":null,"url":null,"abstract":"An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segnet with Unet3+ and EfficientNet: a novel framework of brain tumour segmentation and classification model by multiscale attention-based deep learning techniques with hybrid heuristic improvement using 3D MRI brain images\",\"authors\":\"Ramya D, Lakshmi C\",\"doi\":\"10.1080/13682199.2023.2283678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...\",\"PeriodicalId\":22456,\"journal\":{\"name\":\"The Imaging Science Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Imaging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13682199.2023.2283678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2283678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建议采用自适应深度学习方法,利用三维核磁共振成像图像对脑肿瘤进行分割和分类。首先,收集原始的三维核磁共振成像图像并将其输入预处理,预处理完成后,对图像进行...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segnet with Unet3+ and EfficientNet: a novel framework of brain tumour segmentation and classification model by multiscale attention-based deep learning techniques with hybrid heuristic improvement using 3D MRI brain images
An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of the Internet of Medical Things on Artificial Intelligence-enhanced medical imaging systems from 2019 to 2023 Advancements in adversarial generative text-to-image models: a review Enhancing image encryption security through integration multi-chaotic systems and mixed pixel-bit level Unsupervised low-light image enhancement by data augmentation and contrastive learning Minimum error threshold segmentation method for SAR image based on Rayleigh distribution assumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1