Björn Eliasson, Elin Allansson Kjölhede, Sofia Salö, Nick Fabrin Nielsen, Katarina Eeg-Olofsson
{"title":"使用连续血糖监测仪监测 1 型糖尿病患者 HbA1c 和血糖在范围内的时间之间的关系:基于人群的横断面研究","authors":"Björn Eliasson, Elin Allansson Kjölhede, Sofia Salö, Nick Fabrin Nielsen, Katarina Eeg-Olofsson","doi":"10.1007/s13300-024-01572-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Continuous glucose monitoring (CGM) introduces novel indicators of glycemic control.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This cross-sectional study, based on the Swedish National Diabetes Register, examines 27,980 adults with type 1 diabetes. It explores the relationships between HbA1c (glycated hemoglobin) and various CGM-derived metrics, including TIR (time in range, representing the percentage of time within the range of 4–10 mmol/l for 2 weeks), TAR (time above range), TBR (time below range), mean glucose, standard deviation (SD), and coefficient of variation (CV). Pearson correlation coefficients and linear regression models were utilized for estimation.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The analysis included 46% women, 30% on insulin pump, 7% with previous coronary heart disease and 64% with retinopathy. Mean ± SD values were age 48 ± 18 years, diabetes duration 25 ± 16 years, HbA1c 58.8 ± 12.8 mmol/mol, TIR 58.8 ± 19.0%, TAR 36.3 ± 20.0%, TBR 4.7 ± 5.4%, mean sensor glucose 9.2 ± 2.0 mmol/l, SD 3.3 ± 1.0 mmol/l, and CV 36 ± 7%. The overall association between HbA1c and TIR was − 0.71 (Pearson’s <i>r</i>), with <i>R</i><sup>2</sup> 0.51 in crude linear regression and 0.57 in an adjusted model. <i>R</i><sup>2</sup> values between HbA1c and CGM mean glucose were 0.605 (unadjusted) 0.619 (adjusted) and TAR (unadjusted 0.554 and fully adjusted 0.568, respectively), while fully adjusted <i>R</i><sup>2</sup> values were 0.458, 0.175 and 0.101 between HbA1c and CGM SD, CGM CV and TBR, respectively.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This descriptive study demonstrates that the degree of association between HbA1c and new and readily available CGM-derived metrics, i.e., time in range (TIR), time above range (TAR), and CGM mean glucose, is robust in assessing the management of individuals with type 1 diabetes in clinical settings. Metrics from CGM that pertain to variability and hypoglycemia exhibit only weak correlations with HbA1c.</p>","PeriodicalId":11192,"journal":{"name":"Diabetes Therapy","volume":"20 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associations Between HbA1c and Glucose Time in Range Using Continuous Glucose Monitoring in Type 1 Diabetes: Cross-Sectional Population-Based Study\",\"authors\":\"Björn Eliasson, Elin Allansson Kjölhede, Sofia Salö, Nick Fabrin Nielsen, Katarina Eeg-Olofsson\",\"doi\":\"10.1007/s13300-024-01572-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Introduction</h3><p>Continuous glucose monitoring (CGM) introduces novel indicators of glycemic control.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>This cross-sectional study, based on the Swedish National Diabetes Register, examines 27,980 adults with type 1 diabetes. It explores the relationships between HbA1c (glycated hemoglobin) and various CGM-derived metrics, including TIR (time in range, representing the percentage of time within the range of 4–10 mmol/l for 2 weeks), TAR (time above range), TBR (time below range), mean glucose, standard deviation (SD), and coefficient of variation (CV). Pearson correlation coefficients and linear regression models were utilized for estimation.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The analysis included 46% women, 30% on insulin pump, 7% with previous coronary heart disease and 64% with retinopathy. Mean ± SD values were age 48 ± 18 years, diabetes duration 25 ± 16 years, HbA1c 58.8 ± 12.8 mmol/mol, TIR 58.8 ± 19.0%, TAR 36.3 ± 20.0%, TBR 4.7 ± 5.4%, mean sensor glucose 9.2 ± 2.0 mmol/l, SD 3.3 ± 1.0 mmol/l, and CV 36 ± 7%. The overall association between HbA1c and TIR was − 0.71 (Pearson’s <i>r</i>), with <i>R</i><sup>2</sup> 0.51 in crude linear regression and 0.57 in an adjusted model. <i>R</i><sup>2</sup> values between HbA1c and CGM mean glucose were 0.605 (unadjusted) 0.619 (adjusted) and TAR (unadjusted 0.554 and fully adjusted 0.568, respectively), while fully adjusted <i>R</i><sup>2</sup> values were 0.458, 0.175 and 0.101 between HbA1c and CGM SD, CGM CV and TBR, respectively.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>This descriptive study demonstrates that the degree of association between HbA1c and new and readily available CGM-derived metrics, i.e., time in range (TIR), time above range (TAR), and CGM mean glucose, is robust in assessing the management of individuals with type 1 diabetes in clinical settings. Metrics from CGM that pertain to variability and hypoglycemia exhibit only weak correlations with HbA1c.</p>\",\"PeriodicalId\":11192,\"journal\":{\"name\":\"Diabetes Therapy\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13300-024-01572-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13300-024-01572-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Associations Between HbA1c and Glucose Time in Range Using Continuous Glucose Monitoring in Type 1 Diabetes: Cross-Sectional Population-Based Study
Introduction
Continuous glucose monitoring (CGM) introduces novel indicators of glycemic control.
Methods
This cross-sectional study, based on the Swedish National Diabetes Register, examines 27,980 adults with type 1 diabetes. It explores the relationships between HbA1c (glycated hemoglobin) and various CGM-derived metrics, including TIR (time in range, representing the percentage of time within the range of 4–10 mmol/l for 2 weeks), TAR (time above range), TBR (time below range), mean glucose, standard deviation (SD), and coefficient of variation (CV). Pearson correlation coefficients and linear regression models were utilized for estimation.
Results
The analysis included 46% women, 30% on insulin pump, 7% with previous coronary heart disease and 64% with retinopathy. Mean ± SD values were age 48 ± 18 years, diabetes duration 25 ± 16 years, HbA1c 58.8 ± 12.8 mmol/mol, TIR 58.8 ± 19.0%, TAR 36.3 ± 20.0%, TBR 4.7 ± 5.4%, mean sensor glucose 9.2 ± 2.0 mmol/l, SD 3.3 ± 1.0 mmol/l, and CV 36 ± 7%. The overall association between HbA1c and TIR was − 0.71 (Pearson’s r), with R2 0.51 in crude linear regression and 0.57 in an adjusted model. R2 values between HbA1c and CGM mean glucose were 0.605 (unadjusted) 0.619 (adjusted) and TAR (unadjusted 0.554 and fully adjusted 0.568, respectively), while fully adjusted R2 values were 0.458, 0.175 and 0.101 between HbA1c and CGM SD, CGM CV and TBR, respectively.
Conclusions
This descriptive study demonstrates that the degree of association between HbA1c and new and readily available CGM-derived metrics, i.e., time in range (TIR), time above range (TAR), and CGM mean glucose, is robust in assessing the management of individuals with type 1 diabetes in clinical settings. Metrics from CGM that pertain to variability and hypoglycemia exhibit only weak correlations with HbA1c.
期刊介绍:
Diabetes Therapy is an international, peer reviewed, rapid-publication (peer review in 2 weeks, published 3–4 weeks from acceptance) journal dedicated to the publication of high-quality clinical (all phases), observational, real-world, and health outcomes research around the discovery, development, and use of therapeutics and interventions (including devices) across all areas of diabetes. Studies relating to diagnostics and diagnosis, pharmacoeconomics, public health, epidemiology, quality of life, and patient care, management, and education are also encouraged.
The journal is of interest to a broad audience of healthcare professionals and publishes original research, reviews, communications and letters. The journal is read by a global audience and receives submissions from all over the world. Diabetes Therapy will consider all scientifically sound research be it positive, confirmatory or negative data. Submissions are welcomed whether they relate to an international and/or a country-specific audience, something that is crucially important when researchers are trying to target more specific patient populations. This inclusive approach allows the journal to assist in the dissemination of all scientifically and ethically sound research.