{"title":"基于 Chiplet 的加速器上多 DNN 工作负载的多目标硬件映射协同优化","authors":"Abhijit Das;Enrico Russo;Maurizio Palesi","doi":"10.1109/TC.2024.3386067","DOIUrl":null,"url":null,"abstract":"The need to efficiently execute different Deep Neural Networks (DNNs) on the same computing platform, coupled with the requirement for easy scalability, makes Multi-Chip Module (MCM)-based accelerators a preferred design choice. Such an accelerator brings together heterogeneous sub-accelerators in the form of chiplets, interconnected by a Network-on-Package (NoP). This paper addresses the challenge of selecting the most suitable sub-accelerators, configuring them, determining their optimal placement in the NoP, and mapping the layers of a predetermined set of DNNs spatially and temporally. The objective is to minimise execution time and energy consumption during parallel execution while also minimising the overall cost, specifically the silicon area, of the accelerator. This paper presents MOHaM, a framework for multi-objective hardware-mapping co-optimisation for multi-DNN workloads on chiplet-based accelerators. MOHaM exploits a multi-objective evolutionary algorithm that has been specialised for the given problem by incorporating several customised genetic operators. MOHaM is evaluated against state-of-the-art Design Space Exploration (DSE) frameworks on different multi-DNN workload scenarios. The solutions discovered by MOHaM are Pareto optimal compared to those by the state-of-the-art. Specifically, MOHaM-generated accelerator designs can reduce latency by up to \n<inline-formula><tex-math>$96\\%$</tex-math></inline-formula>\n and energy by up to \n<inline-formula><tex-math>$96.12\\%$</tex-math></inline-formula>\n.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 8","pages":"1883-1898"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Hardware-Mapping Co-Optimisation for Multi-DNN Workloads on Chiplet-Based Accelerators\",\"authors\":\"Abhijit Das;Enrico Russo;Maurizio Palesi\",\"doi\":\"10.1109/TC.2024.3386067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need to efficiently execute different Deep Neural Networks (DNNs) on the same computing platform, coupled with the requirement for easy scalability, makes Multi-Chip Module (MCM)-based accelerators a preferred design choice. Such an accelerator brings together heterogeneous sub-accelerators in the form of chiplets, interconnected by a Network-on-Package (NoP). This paper addresses the challenge of selecting the most suitable sub-accelerators, configuring them, determining their optimal placement in the NoP, and mapping the layers of a predetermined set of DNNs spatially and temporally. The objective is to minimise execution time and energy consumption during parallel execution while also minimising the overall cost, specifically the silicon area, of the accelerator. This paper presents MOHaM, a framework for multi-objective hardware-mapping co-optimisation for multi-DNN workloads on chiplet-based accelerators. MOHaM exploits a multi-objective evolutionary algorithm that has been specialised for the given problem by incorporating several customised genetic operators. MOHaM is evaluated against state-of-the-art Design Space Exploration (DSE) frameworks on different multi-DNN workload scenarios. The solutions discovered by MOHaM are Pareto optimal compared to those by the state-of-the-art. Specifically, MOHaM-generated accelerator designs can reduce latency by up to \\n<inline-formula><tex-math>$96\\\\%$</tex-math></inline-formula>\\n and energy by up to \\n<inline-formula><tex-math>$96.12\\\\%$</tex-math></inline-formula>\\n.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 8\",\"pages\":\"1883-1898\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10496454/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10496454/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Multi-Objective Hardware-Mapping Co-Optimisation for Multi-DNN Workloads on Chiplet-Based Accelerators
The need to efficiently execute different Deep Neural Networks (DNNs) on the same computing platform, coupled with the requirement for easy scalability, makes Multi-Chip Module (MCM)-based accelerators a preferred design choice. Such an accelerator brings together heterogeneous sub-accelerators in the form of chiplets, interconnected by a Network-on-Package (NoP). This paper addresses the challenge of selecting the most suitable sub-accelerators, configuring them, determining their optimal placement in the NoP, and mapping the layers of a predetermined set of DNNs spatially and temporally. The objective is to minimise execution time and energy consumption during parallel execution while also minimising the overall cost, specifically the silicon area, of the accelerator. This paper presents MOHaM, a framework for multi-objective hardware-mapping co-optimisation for multi-DNN workloads on chiplet-based accelerators. MOHaM exploits a multi-objective evolutionary algorithm that has been specialised for the given problem by incorporating several customised genetic operators. MOHaM is evaluated against state-of-the-art Design Space Exploration (DSE) frameworks on different multi-DNN workload scenarios. The solutions discovered by MOHaM are Pareto optimal compared to those by the state-of-the-art. Specifically, MOHaM-generated accelerator designs can reduce latency by up to
$96\%$
and energy by up to
$96.12\%$
.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.