Venkata Sai Gulakaram, Naresh Krishna Vissa, Prasad Kumar Bhaskaran
{"title":"造成孟加拉湾中尺度涡附近混合层变化的过程","authors":"Venkata Sai Gulakaram, Naresh Krishna Vissa, Prasad Kumar Bhaskaran","doi":"10.1007/s10236-024-01612-z","DOIUrl":null,"url":null,"abstract":"<p>The present study investigates the mixed layer variations near mesoscale eddies in the Bay of Bengal (BoB) using satellite altimeter and Argo data. Furthermore, the factors responsible for sea surface variations near mesoscale eddies are analyzed using the mixed layer heat and salinity budgets estimated from Argo profiles. In the diagnostic mixed layer heat budget analysis, the entrainment term is parametrized based on the presence and absence of the barrier layer. The role of inversion and barrier layers on eddy-induced temperature variations is also examined near eddy locations. Results showed that anti-cyclonic eddies deepen mixed layer depth (MLD) and barrier layer thickness (BLT). Whereas, near cyclonic eddies shallower MLD and BLT is evident. However, MLD and BLT variations near mesoscale eddies are prominent during monsoon and winter seasons, respectively. Heat budget analysis near eddy locations depicts that surface heat fluxes and vertical entrainment are the primary factors responsible for temperature variations near mesoscale eddies. Similarly, the salinity budget analysis near eddy locations reveals that horizontal advection (stirring effect) is the predominant processes responsible for the salinity variations. The outcome of the present study is believed to be useful in validating and improving the eddy-resolving ocean models.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Processes responsible for mixed layer variations near mesoscale eddies in the Bay of Bengal\",\"authors\":\"Venkata Sai Gulakaram, Naresh Krishna Vissa, Prasad Kumar Bhaskaran\",\"doi\":\"10.1007/s10236-024-01612-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study investigates the mixed layer variations near mesoscale eddies in the Bay of Bengal (BoB) using satellite altimeter and Argo data. Furthermore, the factors responsible for sea surface variations near mesoscale eddies are analyzed using the mixed layer heat and salinity budgets estimated from Argo profiles. In the diagnostic mixed layer heat budget analysis, the entrainment term is parametrized based on the presence and absence of the barrier layer. The role of inversion and barrier layers on eddy-induced temperature variations is also examined near eddy locations. Results showed that anti-cyclonic eddies deepen mixed layer depth (MLD) and barrier layer thickness (BLT). Whereas, near cyclonic eddies shallower MLD and BLT is evident. However, MLD and BLT variations near mesoscale eddies are prominent during monsoon and winter seasons, respectively. Heat budget analysis near eddy locations depicts that surface heat fluxes and vertical entrainment are the primary factors responsible for temperature variations near mesoscale eddies. Similarly, the salinity budget analysis near eddy locations reveals that horizontal advection (stirring effect) is the predominant processes responsible for the salinity variations. The outcome of the present study is believed to be useful in validating and improving the eddy-resolving ocean models.</p>\",\"PeriodicalId\":19387,\"journal\":{\"name\":\"Ocean Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10236-024-01612-z\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10236-024-01612-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Processes responsible for mixed layer variations near mesoscale eddies in the Bay of Bengal
The present study investigates the mixed layer variations near mesoscale eddies in the Bay of Bengal (BoB) using satellite altimeter and Argo data. Furthermore, the factors responsible for sea surface variations near mesoscale eddies are analyzed using the mixed layer heat and salinity budgets estimated from Argo profiles. In the diagnostic mixed layer heat budget analysis, the entrainment term is parametrized based on the presence and absence of the barrier layer. The role of inversion and barrier layers on eddy-induced temperature variations is also examined near eddy locations. Results showed that anti-cyclonic eddies deepen mixed layer depth (MLD) and barrier layer thickness (BLT). Whereas, near cyclonic eddies shallower MLD and BLT is evident. However, MLD and BLT variations near mesoscale eddies are prominent during monsoon and winter seasons, respectively. Heat budget analysis near eddy locations depicts that surface heat fluxes and vertical entrainment are the primary factors responsible for temperature variations near mesoscale eddies. Similarly, the salinity budget analysis near eddy locations reveals that horizontal advection (stirring effect) is the predominant processes responsible for the salinity variations. The outcome of the present study is believed to be useful in validating and improving the eddy-resolving ocean models.
期刊介绍:
Ocean Dynamics is an international journal that aims to publish high-quality peer-reviewed articles in the following areas of research:
Theoretical oceanography (new theoretical concepts that further system understanding with a strong view to applicability for operational or monitoring purposes);
Computational oceanography (all aspects of ocean modeling and data analysis);
Observational oceanography (new techniques or systematic approaches in measuring oceanic variables, including all aspects of monitoring the state of the ocean);
Articles with an interdisciplinary character that encompass research in the fields of biological, chemical and physical oceanography are especially encouraged.