Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung
{"title":"双重数据堆积:渐近完美多类别分类的高维解决方案","authors":"Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung","doi":"10.1007/s42952-024-00263-6","DOIUrl":null,"url":null,"abstract":"<p>For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"83 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double data piling: a high-dimensional solution for asymptotically perfect multi-category classification\",\"authors\":\"Taehyun Kim, Woonyoung Chang, Jeongyoun Ahn, Sungkyu Jung\",\"doi\":\"10.1007/s42952-024-00263-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.</p>\",\"PeriodicalId\":49992,\"journal\":{\"name\":\"Journal of the Korean Statistical Society\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Statistical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-024-00263-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00263-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Double data piling: a high-dimensional solution for asymptotically perfect multi-category classification
For high-dimensional classification, interpolation of training data manifests as the data piling phenomenon, in which linear projections of data vectors from each class collapse to a single value. Recent research has revealed an additional phenomenon known as the ‘second data piling’ for independent test data in binary classification, providing a theoretical understanding of asymptotically perfect classification. This paper extends these findings to multi-category classification and provides a comprehensive characterization of the double data piling phenomenon. We define the maximal data piling subspace, which maximizes the sum of pairwise distances between piles of training data in multi-category classification. Furthermore, we show that a second data piling subspace that induces data piling for independent data exists and can be consistently estimated by projecting the negatively-ridged discriminant subspace onto an estimated ‘signal’ subspace. By leveraging this second data piling phenomenon, we propose a bias-correction strategy for class assignments, which asymptotically achieves perfect classification. The present research sheds light on benign overfitting and enhances the understanding of perfect multi-category classification of high-dimensional discrimination with a help of high-dimensional asymptotics.
期刊介绍:
The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.