利用蒸汽爆破玉米秸秆合成生物质衍生乙酰丙酸乙酯

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-15 DOI:10.1002/apj.3076
Haoran Zhao, Yu Jia, Yihang Chen, Xuanyu Liang, Jinbo Hao, Binglin Chen, Chao He, Liang Liu, Chun Chang, Guizhuan Xu
{"title":"利用蒸汽爆破玉米秸秆合成生物质衍生乙酰丙酸乙酯","authors":"Haoran Zhao,&nbsp;Yu Jia,&nbsp;Yihang Chen,&nbsp;Xuanyu Liang,&nbsp;Jinbo Hao,&nbsp;Binglin Chen,&nbsp;Chao He,&nbsp;Liang Liu,&nbsp;Chun Chang,&nbsp;Guizhuan Xu","doi":"10.1002/apj.3076","DOIUrl":null,"url":null,"abstract":"<p>Ethyl levulinate (EL) production from steam-exploded corn straw (SCS) in a cascade of reaction using a Brønsted (B) acid and a Lewis (L) acid in ethanol was studied. The entangled structure of corn straw could be obviously damaged through steam explosion when the pressure was 1.5 MPa holding 10 min. The content of cellulose can be increased from 35.9% to 46.8%, and the contents of hemicellulose and lignin were changed from 16.7% to 8.8% and 22.6% to 27.5%, respectively. EL yield was significantly increased from 10.7 to 24.6 wt% under optimal reaction conditions (L/B = 1/20 [mol/mol], 205°C, 90 min, 1.8 g of SCS, 60 mL of ethanol). According to kinetic models, the activation energies for the main and side reactions were 56.8 and 110.5 kJ mol<sup>−1</sup>, respectively. It suggested that SCS was more easily to be converted to EL rather than other by-products. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gaps (HOMO-LUMO gaps) of cellobiose over the mixed acids in ethanol were significantly reduced with frontier molecular orbital (FMO) theory. This work provides an effective strategy for EL production from agricultural waste straws.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of biomass-derived ethyl levulinate from steam-exploded corn straw\",\"authors\":\"Haoran Zhao,&nbsp;Yu Jia,&nbsp;Yihang Chen,&nbsp;Xuanyu Liang,&nbsp;Jinbo Hao,&nbsp;Binglin Chen,&nbsp;Chao He,&nbsp;Liang Liu,&nbsp;Chun Chang,&nbsp;Guizhuan Xu\",\"doi\":\"10.1002/apj.3076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ethyl levulinate (EL) production from steam-exploded corn straw (SCS) in a cascade of reaction using a Brønsted (B) acid and a Lewis (L) acid in ethanol was studied. The entangled structure of corn straw could be obviously damaged through steam explosion when the pressure was 1.5 MPa holding 10 min. The content of cellulose can be increased from 35.9% to 46.8%, and the contents of hemicellulose and lignin were changed from 16.7% to 8.8% and 22.6% to 27.5%, respectively. EL yield was significantly increased from 10.7 to 24.6 wt% under optimal reaction conditions (L/B = 1/20 [mol/mol], 205°C, 90 min, 1.8 g of SCS, 60 mL of ethanol). According to kinetic models, the activation energies for the main and side reactions were 56.8 and 110.5 kJ mol<sup>−1</sup>, respectively. It suggested that SCS was more easily to be converted to EL rather than other by-products. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gaps (HOMO-LUMO gaps) of cellobiose over the mixed acids in ethanol were significantly reduced with frontier molecular orbital (FMO) theory. This work provides an effective strategy for EL production from agricultural waste straws.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了在乙醇中使用布氏(B)酸和路易斯(L)酸通过级联反应从汽爆玉米秸秆(SCS)中生产乙酰丙酮酸乙酯(EL)的过程。当压力为 1.5 兆帕并保持 10 分钟时,玉米秸秆的缠结结构会通过蒸汽爆炸受到明显破坏。纤维素含量从 35.9% 增加到 46.8%,半纤维素和木质素含量分别从 16.7% 和 22.6% 增加到 8.8% 和 27.5%。在最佳反应条件下(L/B = 1/20 [mol/mol],205°C,90 分钟,1.8 克 SCS,60 毫升乙醇),EL 收率从 10.7% 显著提高到 24.6%。根据动力学模型,主反应和副反应的活化能分别为 56.8 和 110.5 kJ mol-1。这表明 SCS 比其他副产物更容易转化为 EL。根据前沿分子轨道(FMO)理论,在乙醇中,纤维生物糖的最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)能隙(HOMO-LUMO 能隙)比混合酸的能隙显著减小。这项工作为利用农业废弃秸秆生产 EL 提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of biomass-derived ethyl levulinate from steam-exploded corn straw

Ethyl levulinate (EL) production from steam-exploded corn straw (SCS) in a cascade of reaction using a Brønsted (B) acid and a Lewis (L) acid in ethanol was studied. The entangled structure of corn straw could be obviously damaged through steam explosion when the pressure was 1.5 MPa holding 10 min. The content of cellulose can be increased from 35.9% to 46.8%, and the contents of hemicellulose and lignin were changed from 16.7% to 8.8% and 22.6% to 27.5%, respectively. EL yield was significantly increased from 10.7 to 24.6 wt% under optimal reaction conditions (L/B = 1/20 [mol/mol], 205°C, 90 min, 1.8 g of SCS, 60 mL of ethanol). According to kinetic models, the activation energies for the main and side reactions were 56.8 and 110.5 kJ mol−1, respectively. It suggested that SCS was more easily to be converted to EL rather than other by-products. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gaps (HOMO-LUMO gaps) of cellobiose over the mixed acids in ethanol were significantly reduced with frontier molecular orbital (FMO) theory. This work provides an effective strategy for EL production from agricultural waste straws.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1