{"title":"利用蒸汽爆破玉米秸秆合成生物质衍生乙酰丙酸乙酯","authors":"Haoran Zhao, Yu Jia, Yihang Chen, Xuanyu Liang, Jinbo Hao, Binglin Chen, Chao He, Liang Liu, Chun Chang, Guizhuan Xu","doi":"10.1002/apj.3076","DOIUrl":null,"url":null,"abstract":"<p>Ethyl levulinate (EL) production from steam-exploded corn straw (SCS) in a cascade of reaction using a Brønsted (B) acid and a Lewis (L) acid in ethanol was studied. The entangled structure of corn straw could be obviously damaged through steam explosion when the pressure was 1.5 MPa holding 10 min. The content of cellulose can be increased from 35.9% to 46.8%, and the contents of hemicellulose and lignin were changed from 16.7% to 8.8% and 22.6% to 27.5%, respectively. EL yield was significantly increased from 10.7 to 24.6 wt% under optimal reaction conditions (L/B = 1/20 [mol/mol], 205°C, 90 min, 1.8 g of SCS, 60 mL of ethanol). According to kinetic models, the activation energies for the main and side reactions were 56.8 and 110.5 kJ mol<sup>−1</sup>, respectively. It suggested that SCS was more easily to be converted to EL rather than other by-products. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gaps (HOMO-LUMO gaps) of cellobiose over the mixed acids in ethanol were significantly reduced with frontier molecular orbital (FMO) theory. This work provides an effective strategy for EL production from agricultural waste straws.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of biomass-derived ethyl levulinate from steam-exploded corn straw\",\"authors\":\"Haoran Zhao, Yu Jia, Yihang Chen, Xuanyu Liang, Jinbo Hao, Binglin Chen, Chao He, Liang Liu, Chun Chang, Guizhuan Xu\",\"doi\":\"10.1002/apj.3076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ethyl levulinate (EL) production from steam-exploded corn straw (SCS) in a cascade of reaction using a Brønsted (B) acid and a Lewis (L) acid in ethanol was studied. The entangled structure of corn straw could be obviously damaged through steam explosion when the pressure was 1.5 MPa holding 10 min. The content of cellulose can be increased from 35.9% to 46.8%, and the contents of hemicellulose and lignin were changed from 16.7% to 8.8% and 22.6% to 27.5%, respectively. EL yield was significantly increased from 10.7 to 24.6 wt% under optimal reaction conditions (L/B = 1/20 [mol/mol], 205°C, 90 min, 1.8 g of SCS, 60 mL of ethanol). According to kinetic models, the activation energies for the main and side reactions were 56.8 and 110.5 kJ mol<sup>−1</sup>, respectively. It suggested that SCS was more easily to be converted to EL rather than other by-products. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gaps (HOMO-LUMO gaps) of cellobiose over the mixed acids in ethanol were significantly reduced with frontier molecular orbital (FMO) theory. This work provides an effective strategy for EL production from agricultural waste straws.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3076\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of biomass-derived ethyl levulinate from steam-exploded corn straw
Ethyl levulinate (EL) production from steam-exploded corn straw (SCS) in a cascade of reaction using a Brønsted (B) acid and a Lewis (L) acid in ethanol was studied. The entangled structure of corn straw could be obviously damaged through steam explosion when the pressure was 1.5 MPa holding 10 min. The content of cellulose can be increased from 35.9% to 46.8%, and the contents of hemicellulose and lignin were changed from 16.7% to 8.8% and 22.6% to 27.5%, respectively. EL yield was significantly increased from 10.7 to 24.6 wt% under optimal reaction conditions (L/B = 1/20 [mol/mol], 205°C, 90 min, 1.8 g of SCS, 60 mL of ethanol). According to kinetic models, the activation energies for the main and side reactions were 56.8 and 110.5 kJ mol−1, respectively. It suggested that SCS was more easily to be converted to EL rather than other by-products. The highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy gaps (HOMO-LUMO gaps) of cellobiose over the mixed acids in ethanol were significantly reduced with frontier molecular orbital (FMO) theory. This work provides an effective strategy for EL production from agricultural waste straws.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.