原油波动指数的混合预测:股市跳跃的跨市场效应

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-04-11 DOI:10.1002/for.3132
Gongyue Jiang, Gaoxiu Qiao, Lu Wang, Feng Ma
{"title":"原油波动指数的混合预测:股市跳跃的跨市场效应","authors":"Gongyue Jiang,&nbsp;Gaoxiu Qiao,&nbsp;Lu Wang,&nbsp;Feng Ma","doi":"10.1002/for.3132","DOIUrl":null,"url":null,"abstract":"<p>From the cross-market perspective, this paper investigates crude oil volatility index (OVX) forecasts by proposing a hybrid method, which combines the data-driven SVR technique and parametric models. In terms of parametric models, we utilize GARCH-type models with jumps, and the forecasting effects of five non-parametric jumps (including interday and intraday jump tests) of stock market are also explored. Empirical results show that our approach can substantially increase forecasting accuracy. In addition, the model confidence set test and robust test reaffirm the superiority of the novel hybrid method. From the assessment of economic significance, the advantages of the hybrid method for volatility index forecasting are further confirmed. All these findings imply that jumps of stock market can be helpful in forecasting OVX, especially after the introduction of the hybrid method. Our work can certainly provide a new insight for volatility forecasting and cross-market research.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"2378-2398"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid forecasting of crude oil volatility index: The cross-market effects of stock market jumps\",\"authors\":\"Gongyue Jiang,&nbsp;Gaoxiu Qiao,&nbsp;Lu Wang,&nbsp;Feng Ma\",\"doi\":\"10.1002/for.3132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>From the cross-market perspective, this paper investigates crude oil volatility index (OVX) forecasts by proposing a hybrid method, which combines the data-driven SVR technique and parametric models. In terms of parametric models, we utilize GARCH-type models with jumps, and the forecasting effects of five non-parametric jumps (including interday and intraday jump tests) of stock market are also explored. Empirical results show that our approach can substantially increase forecasting accuracy. In addition, the model confidence set test and robust test reaffirm the superiority of the novel hybrid method. From the assessment of economic significance, the advantages of the hybrid method for volatility index forecasting are further confirmed. All these findings imply that jumps of stock market can be helpful in forecasting OVX, especially after the introduction of the hybrid method. Our work can certainly provide a new insight for volatility forecasting and cross-market research.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"43 6\",\"pages\":\"2378-2398\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3132\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3132","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从跨市场的角度出发,提出了一种将数据驱动的 SVR 技术与参数模型相结合的混合方法,对原油波动率指数(OVX)的预测进行了研究。在参数模型方面,我们采用了带跳跃的 GARCH 型模型,同时还探讨了五种非参数跳跃(包括日间和日内跳跃测试)对股市的预测效果。实证结果表明,我们的方法可以大幅提高预测精度。此外,模型置信集检验和稳健检验也再次证明了新型混合方法的优越性。从经济意义评估来看,混合方法在波动率指数预测方面的优势得到了进一步证实。所有这些发现都意味着股票市场的跳跃有助于预测 OVX,尤其是在引入混合方法之后。我们的工作无疑能为波动率预测和跨市场研究提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid forecasting of crude oil volatility index: The cross-market effects of stock market jumps

From the cross-market perspective, this paper investigates crude oil volatility index (OVX) forecasts by proposing a hybrid method, which combines the data-driven SVR technique and parametric models. In terms of parametric models, we utilize GARCH-type models with jumps, and the forecasting effects of five non-parametric jumps (including interday and intraday jump tests) of stock market are also explored. Empirical results show that our approach can substantially increase forecasting accuracy. In addition, the model confidence set test and robust test reaffirm the superiority of the novel hybrid method. From the assessment of economic significance, the advantages of the hybrid method for volatility index forecasting are further confirmed. All these findings imply that jumps of stock market can be helpful in forecasting OVX, especially after the introduction of the hybrid method. Our work can certainly provide a new insight for volatility forecasting and cross-market research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1