硒能抑制艾氏实体瘤的生长,改善肿瘤小鼠的健康状况

Heba A. Hekal, Maggie E. Amer, Maher Amer, Mohamed A. El-Missiry, Azza I. Othman
{"title":"硒能抑制艾氏实体瘤的生长,改善肿瘤小鼠的健康状况","authors":"Heba A. Hekal,&nbsp;Maggie E. Amer,&nbsp;Maher Amer,&nbsp;Mohamed A. El-Missiry,&nbsp;Azza I. Othman","doi":"10.1002/jez.2815","DOIUrl":null,"url":null,"abstract":"<p>Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G<sub>0</sub>/G<sub>1</sub> phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium suppressed growth of Ehrlich solid tumor and improved health of tumor-bearing mice\",\"authors\":\"Heba A. Hekal,&nbsp;Maggie E. Amer,&nbsp;Maher Amer,&nbsp;Mohamed A. El-Missiry,&nbsp;Azza I. Othman\",\"doi\":\"10.1002/jez.2815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G<sub>0</sub>/G<sub>1</sub> phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.</p>\",\"PeriodicalId\":15711,\"journal\":{\"name\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.2815\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2815","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硒(Se)是癌症治疗中一种重要的微量营养生物大分子。本研究评估了 Se 的抗癌作用及其改善皮下实体艾氏癌小鼠健康状况的能力。实验共分四组,每组五只雌性 BALB/c 小鼠。其中两组在接受或不接受 Se 治疗的情况下移植艾氏肿瘤细胞。其他组作为对照组,接受或不接受 Se 治疗。Se 治疗显著减少了肿瘤小鼠的肿瘤体积和动物体重。Se 治疗显著增加了肿瘤中的氧化应激,同时改善了肿瘤小鼠血清中的氧化应激。同样,用 Se 治疗会导致肿瘤小鼠血清中炎症细胞因子(TNF-α 和 IL-6)的下调,同时增加 IL-10。相反,硒增加了肿瘤中的 TNF-α 和 IL-6,减少了 IL-10,这表明肿瘤免疫受到破坏。肿瘤组织中氧化应激和炎症的增加导致细胞周期阶段失调,G0/G1 期凋亡肿瘤细胞数量增加。肿瘤组织中的凋亡调节蛋白(Bax、caspase-3 和 P-53)水平升高,而 Bcl-2 水平下降,也证明了这一点。用 Se 处理还导致彗星参数增加,表明肿瘤细胞的 DNA 受到破坏。组织病理学检查显示,用 Se 治疗的小鼠肿瘤内的肿瘤细胞数量明显减少。总之,这些研究结果表明,Se疗法能显著抑制实体瘤的增殖和生长,同时缓解肿瘤小鼠的健康状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selenium suppressed growth of Ehrlich solid tumor and improved health of tumor-bearing mice

Selenium (Se) is an important micronutritional biomolecule in cancer therapy. The current work evaluated the anticancer effect of Se and its ability to improve health of mice with solid Ehrlich carcinoma implanted subcutaneously. Four groups of five female BALB/c mice each were assembled. Ehrlich tumor cells were engrafted into two of them, either with or without Se therapy. The other groups served as control groups, either with or without Se treatment. Se treatment resulted in a notable decrease in both tumor volume and animal body mass in tumor-bearing mice. Treatment with Se markedly increased oxidative stress in tumor while ameliorating oxidative stress in sera of tumors-bearing mice. Similarly, treatment with Se resulted in downregulation of inflammatory cytokines (TNF-α and IL-6) while increasing IL-10 in serum of tumor-bearing mice. Conversely, selenium increased TNF- α and IL-6 and decreased IL-10 in tumor suggesting disruption of tumor immunity. The increased oxidative stress and inflammation in tumor tissue dysregulated cell cycle phases with increase apoptotic tumor cells population in G0/G1 phase. This is supported by the increased levels apoptotic regulating proteins (Bax and caspase-3 and P-53) while decreasing Bcl-2 in the tumor tissue. Treatment with Se also resulted in increased comet parameters indicating DNA damage of tumor cells. Histopathological examination revealed a significant decrease in a number of neoplastic cells within tumor of mice that treated with Se. In conclusion, these findings suggest that Se therapy significantly suppressed solid tumor proliferation and growth while mitigating the health status of tumor-bearing mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of experimental zoology. Part A, Ecological and integrative physiology
Journal of experimental zoology. Part A, Ecological and integrative physiology Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
4.90
自引率
3.60%
发文量
0
期刊介绍: The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.
期刊最新文献
Variation in Plumage Coloration of Rosy-Faced Lovebirds (Agapornis roseicollis): Links to Sex, Age, Nutritional Condition, Viral Infection, and Habitat Urbanization. Mitigation of biochemical alterations in streptozotocin-induced gestational diabetes in rats through mesenchymal stem cells and olive leaf extract. Issue Information Tree Frogs Alter Their Behavioral Strategies While Landing On Vertical Perches. Effect of melatonin supplementation upon parental care and nestling growth in arctic-breeding songbirds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1