大型 GCVAE:利用自适应变压器模型进行决策,用于半导体行业故障根源分析

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Manufacturing Pub Date : 2024-04-02 DOI:10.1007/s10845-024-02346-x
Kenneth Ezukwoke, Anis Hoayek, Mireille Batton-Hubert, Xavier Boucher, Pascal Gounet, Jérôme Adrian
{"title":"大型 GCVAE:利用自适应变压器模型进行决策,用于半导体行业故障根源分析","authors":"Kenneth Ezukwoke, Anis Hoayek, Mireille Batton-Hubert, Xavier Boucher, Pascal Gounet, Jérôme Adrian","doi":"10.1007/s10845-024-02346-x","DOIUrl":null,"url":null,"abstract":"<p>Pre-trained large language models (LLMs) have gained significant attention in the field of natural language processing (NLP), especially for the task of text summarization, generation, and question answering. The success of LMs can be attributed to the attention mechanism introduced in Transformer models, which have outperformed traditional recurrent neural network models (e.g., LSTM) in modeling sequential data. In this paper, we leverage pre-trained causal language models for the downstream task of failure analysis triplet generation (FATG), which involves generating a sequence of failure analysis decision steps for identifying failure root causes in the semiconductor industry. In particular, we conduct extensive comparative analysis of various transformer models for the FATG task and find that the BERT-GPT-2 Transformer (Big GCVAE), fine-tuned on a proposed Generalized-Controllable Variational AutoEncoder loss (GCVAE), exhibits superior performance in generating informative latent space by promoting disentanglement of latent factors. Specifically, we observe that fine-tuning the Transformer style BERT-GPT2 on the GCVAE loss yields optimal representation by reducing the trade-off between reconstruction loss and KL-divergence, promoting meaningful, diverse and coherent FATs similar to expert expectations.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"87 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big GCVAE: decision-making with adaptive transformer model for failure root cause analysis in semiconductor industry\",\"authors\":\"Kenneth Ezukwoke, Anis Hoayek, Mireille Batton-Hubert, Xavier Boucher, Pascal Gounet, Jérôme Adrian\",\"doi\":\"10.1007/s10845-024-02346-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pre-trained large language models (LLMs) have gained significant attention in the field of natural language processing (NLP), especially for the task of text summarization, generation, and question answering. The success of LMs can be attributed to the attention mechanism introduced in Transformer models, which have outperformed traditional recurrent neural network models (e.g., LSTM) in modeling sequential data. In this paper, we leverage pre-trained causal language models for the downstream task of failure analysis triplet generation (FATG), which involves generating a sequence of failure analysis decision steps for identifying failure root causes in the semiconductor industry. In particular, we conduct extensive comparative analysis of various transformer models for the FATG task and find that the BERT-GPT-2 Transformer (Big GCVAE), fine-tuned on a proposed Generalized-Controllable Variational AutoEncoder loss (GCVAE), exhibits superior performance in generating informative latent space by promoting disentanglement of latent factors. Specifically, we observe that fine-tuning the Transformer style BERT-GPT2 on the GCVAE loss yields optimal representation by reducing the trade-off between reconstruction loss and KL-divergence, promoting meaningful, diverse and coherent FATs similar to expert expectations.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02346-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02346-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在自然语言处理(NLP)领域,特别是在文本摘要、生成和问题解答任务中,预训练的大型语言模型(LLMs)获得了极大的关注。LMs 的成功可归功于 Transformer 模型中引入的注意力机制,它在序列数据建模方面的表现优于传统的递归神经网络模型(如 LSTM)。在本文中,我们利用预训练的因果语言模型来完成故障分析三元组生成(FATG)的下游任务,该任务涉及生成故障分析决策步骤序列,以识别半导体行业中的故障根源。特别是,我们对 FATG 任务中的各种变换器模型进行了广泛的比较分析,发现在拟议的广义可控变异自动编码器损失(GCVAE)基础上进行微调的 BERT-GPT-2 变换器(Big GCVAE)通过促进潜在因素的解缠,在生成信息丰富的潜在空间方面表现出卓越的性能。具体来说,我们观察到,在 GCVAE 损失上对变换器式 BERT-GPT2 进行微调,可通过减少重建损失和 KL-发散之间的权衡获得最佳表示,从而促进与专家期望相似的有意义、多样化和连贯的 FAT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Big GCVAE: decision-making with adaptive transformer model for failure root cause analysis in semiconductor industry

Pre-trained large language models (LLMs) have gained significant attention in the field of natural language processing (NLP), especially for the task of text summarization, generation, and question answering. The success of LMs can be attributed to the attention mechanism introduced in Transformer models, which have outperformed traditional recurrent neural network models (e.g., LSTM) in modeling sequential data. In this paper, we leverage pre-trained causal language models for the downstream task of failure analysis triplet generation (FATG), which involves generating a sequence of failure analysis decision steps for identifying failure root causes in the semiconductor industry. In particular, we conduct extensive comparative analysis of various transformer models for the FATG task and find that the BERT-GPT-2 Transformer (Big GCVAE), fine-tuned on a proposed Generalized-Controllable Variational AutoEncoder loss (GCVAE), exhibits superior performance in generating informative latent space by promoting disentanglement of latent factors. Specifically, we observe that fine-tuning the Transformer style BERT-GPT2 on the GCVAE loss yields optimal representation by reducing the trade-off between reconstruction loss and KL-divergence, promoting meaningful, diverse and coherent FATs similar to expert expectations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Industrial vision inspection using digital twins: bridging CAD models and realistic scenarios Reliability-improved machine learning model using knowledge-embedded learning approach for smart manufacturing Smart scheduling for next generation manufacturing systems: a systematic literature review An overview of traditional and advanced methods to detect part defects in additive manufacturing processes A systematic multi-layer cognitive model for intelligent machine tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1