{"title":"塑性在剪切增稠致密悬浮液的普遍缩放中的作用","authors":"Sachidananda Barik, Akhil Mohanan, Sayantan Majumdar","doi":"10.1007/s00397-024-01443-1","DOIUrl":null,"url":null,"abstract":"<div><p>Increase in viscosity under increasing shear stress, known as shear thickening (ST), is one of the most striking properties of dense particulate suspensions. Under appropriate conditions, they exhibit discontinuous shear thickening (DST), where the viscosity increases dramatically and can also transform into a solid-like state due to shear-induced jamming (SJ). The microscopic mechanism giving rise to such interesting phenomena is still a topic of intense research. A phenomenological model proposed by Wyart and Cates shows that the proliferation of stress-activated interparticle frictional contacts can give rise to such striking flow properties. Building on this model, recent work proposes and verifies a universal scaling relation for ST systems where two different power-law regimes with a well-defined crossover point are obtained. Nonetheless, the difference in the nature of the flow in these two scaling regimes remains unexplored. Here, using rheology in conjugation with high-speed optical imaging, we study the flow and local deformations in various ST systems. We observe that with increasing applied stress, the smooth flow changes into a spatio-temporally varying flow across the scaling crossover. We show that such fluctuating flow is associated with intermittent dilatancy, shear-band plasticity, and fracture induced by system-spanning frictional contacts.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 4","pages":"291 - 300"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of plasticity in the universal scaling of shear-thickening dense suspensions\",\"authors\":\"Sachidananda Barik, Akhil Mohanan, Sayantan Majumdar\",\"doi\":\"10.1007/s00397-024-01443-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increase in viscosity under increasing shear stress, known as shear thickening (ST), is one of the most striking properties of dense particulate suspensions. Under appropriate conditions, they exhibit discontinuous shear thickening (DST), where the viscosity increases dramatically and can also transform into a solid-like state due to shear-induced jamming (SJ). The microscopic mechanism giving rise to such interesting phenomena is still a topic of intense research. A phenomenological model proposed by Wyart and Cates shows that the proliferation of stress-activated interparticle frictional contacts can give rise to such striking flow properties. Building on this model, recent work proposes and verifies a universal scaling relation for ST systems where two different power-law regimes with a well-defined crossover point are obtained. Nonetheless, the difference in the nature of the flow in these two scaling regimes remains unexplored. Here, using rheology in conjugation with high-speed optical imaging, we study the flow and local deformations in various ST systems. We observe that with increasing applied stress, the smooth flow changes into a spatio-temporally varying flow across the scaling crossover. We show that such fluctuating flow is associated with intermittent dilatancy, shear-band plasticity, and fracture induced by system-spanning frictional contacts.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":\"63 4\",\"pages\":\"291 - 300\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-024-01443-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01443-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
在剪切应力增加的情况下粘度增加,即剪切增稠(ST),是致密颗粒悬浮液最显著的特性之一。在适当的条件下,它们会表现出不连续剪切增稠(DST)现象,此时粘度会急剧增加,还可能由于剪切诱导堵塞(SJ)而转变为类似固体的状态。导致这种有趣现象的微观机制仍是一个热门研究课题。Wyart 和 Cates 提出的一个现象学模型表明,应力激活的颗粒间摩擦接触的扩散可以产生如此惊人的流动特性。在这一模型的基础上,最近的研究提出并验证了 ST 系统的普遍缩放关系,在这一关系中,得到了两种不同的幂律状态,并有一个明确的交叉点。然而,这两种比例关系中流动性质的差异仍有待探索。在此,我们将流变学与高速光学成像相结合,研究了各种 ST 系统中的流动和局部变形。我们观察到,随着外加应力的增加,平滑的流动会转变为跨越缩放交叉点的时空变化流动。我们发现,这种波动流动与间歇性扩张、剪切带塑性以及系统跨摩擦接触诱发的断裂有关。
Role of plasticity in the universal scaling of shear-thickening dense suspensions
Increase in viscosity under increasing shear stress, known as shear thickening (ST), is one of the most striking properties of dense particulate suspensions. Under appropriate conditions, they exhibit discontinuous shear thickening (DST), where the viscosity increases dramatically and can also transform into a solid-like state due to shear-induced jamming (SJ). The microscopic mechanism giving rise to such interesting phenomena is still a topic of intense research. A phenomenological model proposed by Wyart and Cates shows that the proliferation of stress-activated interparticle frictional contacts can give rise to such striking flow properties. Building on this model, recent work proposes and verifies a universal scaling relation for ST systems where two different power-law regimes with a well-defined crossover point are obtained. Nonetheless, the difference in the nature of the flow in these two scaling regimes remains unexplored. Here, using rheology in conjugation with high-speed optical imaging, we study the flow and local deformations in various ST systems. We observe that with increasing applied stress, the smooth flow changes into a spatio-temporally varying flow across the scaling crossover. We show that such fluctuating flow is associated with intermittent dilatancy, shear-band plasticity, and fracture induced by system-spanning frictional contacts.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."