羊角霉素和西酞普兰对大鼠记忆和运动活动的交互作用:对海马中BDNF和突触素水平的深入研究

Samineh Nasseri, Shadi Hajrasouliha, Salar Vaseghi, Batool Ghorbani Yekta
{"title":"羊角霉素和西酞普兰对大鼠记忆和运动活动的交互作用:对海马中BDNF和突触素水平的深入研究","authors":"Samineh Nasseri, Shadi Hajrasouliha, Salar Vaseghi, Batool Ghorbani Yekta","doi":"10.1007/s00210-024-03069-9","DOIUrl":null,"url":null,"abstract":"<p>Selective serotonin reuptake inhibitors (SSRIs) are widely used drugs for the treatment of depression. Citalopram is one of the most prescribed SSRIs that is useful for the treatment of depression, obsessive–compulsive disorder, and anxiety disorders. On the other hand, crocin (active constitute of saffron) has pro-cognitive and mood enhancer effects. Also, both citalopram and crocin affect the function and expression of brain-derived neurotrophic factor (BDNF) and synaptophysin, two molecular factors that are involved in cognitive functions and mood. In the present study, we aim to investigate the interaction effect of citalopram and crocin on rats’ performance in the open field test (locomotor activity and anxiety-like behavior) and the shuttle box (passive avoidance memory). Citalopram was injected at the doses of 10, 30, and 50 mg/kg, and crocin was injected at the dose of 50 mg/kg; all administrations were intraperitoneal. Real-time PCR was used to assess the expression level of BDNF and synaptophysin in the hippocampus. The results showed that citalopram (30 and 50 mg/kg) impaired passive avoidance memory and decreased BDNF and synaptophysin expression in the hippocampus, while crocin reversed memory impairment, and BDNF and synaptophysin expression in the hippocampus of rats received citalopram 30 mg/kg. Also, crocin partially showed these effects in rats that received citalopram 50 mg/kg. The results of the open field test were unchanged. In conclusion, we suggested that BDNF and synaptophysin may be involved in the effects of both citalopram and crocin.</p>","PeriodicalId":18862,"journal":{"name":"Naunyn-schmiedebergs Archives of Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction effect of crocin and citalopram on memory and locomotor activity in rats: an insight into BDNF and synaptophysin levels in the hippocampus\",\"authors\":\"Samineh Nasseri, Shadi Hajrasouliha, Salar Vaseghi, Batool Ghorbani Yekta\",\"doi\":\"10.1007/s00210-024-03069-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Selective serotonin reuptake inhibitors (SSRIs) are widely used drugs for the treatment of depression. Citalopram is one of the most prescribed SSRIs that is useful for the treatment of depression, obsessive–compulsive disorder, and anxiety disorders. On the other hand, crocin (active constitute of saffron) has pro-cognitive and mood enhancer effects. Also, both citalopram and crocin affect the function and expression of brain-derived neurotrophic factor (BDNF) and synaptophysin, two molecular factors that are involved in cognitive functions and mood. In the present study, we aim to investigate the interaction effect of citalopram and crocin on rats’ performance in the open field test (locomotor activity and anxiety-like behavior) and the shuttle box (passive avoidance memory). Citalopram was injected at the doses of 10, 30, and 50 mg/kg, and crocin was injected at the dose of 50 mg/kg; all administrations were intraperitoneal. Real-time PCR was used to assess the expression level of BDNF and synaptophysin in the hippocampus. The results showed that citalopram (30 and 50 mg/kg) impaired passive avoidance memory and decreased BDNF and synaptophysin expression in the hippocampus, while crocin reversed memory impairment, and BDNF and synaptophysin expression in the hippocampus of rats received citalopram 30 mg/kg. Also, crocin partially showed these effects in rats that received citalopram 50 mg/kg. The results of the open field test were unchanged. In conclusion, we suggested that BDNF and synaptophysin may be involved in the effects of both citalopram and crocin.</p>\",\"PeriodicalId\":18862,\"journal\":{\"name\":\"Naunyn-schmiedebergs Archives of Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-schmiedebergs Archives of Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03069-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-schmiedebergs Archives of Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00210-024-03069-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

选择性血清素再摄取抑制剂(SSRIs)是广泛用于治疗抑郁症的药物。西酞普兰是处方量最大的 SSRIs 之一,可用于治疗抑郁症、强迫症和焦虑症。另一方面,藏红花的活性成分藏红花苷具有促进认知和改善情绪的作用。此外,西酞普兰和藏红花苷都会影响脑源性神经营养因子(BDNF)和突触素(synaptophysin)的功能和表达。本研究旨在探讨西酞普兰和巴豆苷对大鼠在开阔地试验(运动活动和焦虑样行为)和穿梭箱试验(被动回避记忆)中表现的交互影响。西酞普兰的注射剂量为10、30和50毫克/千克,巴豆苷的注射剂量为50毫克/千克;所有给药方式均为腹腔注射。实验采用实时荧光定量PCR技术评估海马中BDNF和突触素的表达水平。结果表明,西酞普兰(30和50毫克/千克)会损害大鼠的被动回避记忆,并降低海马中BDNF和突触素的表达,而巴豆苷能逆转大鼠的记忆损害,以及西酞普兰30毫克/千克剂量下大鼠海马中BDNF和突触素的表达。此外,在服用西酞普兰 50 毫克/千克的大鼠中,巴豆苷也部分显示了这些作用。开放场试验的结果没有变化。总之,我们认为BDNF和突触素可能参与了西酞普兰和巴豆苷的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction effect of crocin and citalopram on memory and locomotor activity in rats: an insight into BDNF and synaptophysin levels in the hippocampus

Selective serotonin reuptake inhibitors (SSRIs) are widely used drugs for the treatment of depression. Citalopram is one of the most prescribed SSRIs that is useful for the treatment of depression, obsessive–compulsive disorder, and anxiety disorders. On the other hand, crocin (active constitute of saffron) has pro-cognitive and mood enhancer effects. Also, both citalopram and crocin affect the function and expression of brain-derived neurotrophic factor (BDNF) and synaptophysin, two molecular factors that are involved in cognitive functions and mood. In the present study, we aim to investigate the interaction effect of citalopram and crocin on rats’ performance in the open field test (locomotor activity and anxiety-like behavior) and the shuttle box (passive avoidance memory). Citalopram was injected at the doses of 10, 30, and 50 mg/kg, and crocin was injected at the dose of 50 mg/kg; all administrations were intraperitoneal. Real-time PCR was used to assess the expression level of BDNF and synaptophysin in the hippocampus. The results showed that citalopram (30 and 50 mg/kg) impaired passive avoidance memory and decreased BDNF and synaptophysin expression in the hippocampus, while crocin reversed memory impairment, and BDNF and synaptophysin expression in the hippocampus of rats received citalopram 30 mg/kg. Also, crocin partially showed these effects in rats that received citalopram 50 mg/kg. The results of the open field test were unchanged. In conclusion, we suggested that BDNF and synaptophysin may be involved in the effects of both citalopram and crocin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cardioprotective effects of GPER agonist in ovariectomized diabetic rats: reversing ER stress and structural changes Laboratory and physiological aspects of substitute metazoan models for in vivo pharmacotoxicological analysis Protective effects of α-Pinene against carbon tetrachloride-induced cardiac injury in Wistar rats: modulation of antioxidant and inflammatory responses Mechanisms and effects of AdipoRon, an adiponectin receptor agonist, on ovarian granulosa cells—a systematic review Dysfunctional cardiac energy transduction, mitochondrial oxidative stress, oncogenic and apoptotic signaling in DiNP-induced asthma in murine model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1