多能源系统中基于容限优化的多目标控制

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Transactions on Electrical Energy Systems Pub Date : 2024-04-15 DOI:10.1155/2024/9991046
Suliang Ma, Yaxin Li, Yuan Jiang, Yiwen Wu, Guanglin Sha
{"title":"多能源系统中基于容限优化的多目标控制","authors":"Suliang Ma,&nbsp;Yaxin Li,&nbsp;Yuan Jiang,&nbsp;Yiwen Wu,&nbsp;Guanglin Sha","doi":"10.1155/2024/9991046","DOIUrl":null,"url":null,"abstract":"<p>To address the issue of multiobjective control in multienergy systems with diverse operational objectives, a two-stage optimization framework based on expected point tolerance has been proposed in this paper. In the first stage, a single objective function is used for optimization control to obtain the expected point of the multiobjective optimization problem. Then, in the second stage, by defining the allowable deviation between each optimization objective and the expected point, the original multiobjective optimization problem is transformed into a single objective optimization problem solution with tolerance measurement. Finally, in the simulation scene of a multienergy system, it is demonstrated that compared with the optimal results under each single objective method, the proposed method increases power line loss, maximum voltage deviation, new energy consumption, and economy by 2.22, 2.30, 1.02, and 2.45 times, respectively. Compared with the suboptimal results, the proposed method reduces power line loss by 22.26, 1.74, 1.09, and 0.97 times, respectively. Combining the shape of the Pareto frontier, it is demonstrated that the proposed method can comprehensively consider the needs of multiple power optimization objectives for forming a more reasonable and effective system optimization scheduling and also provide a new approach for solving multiobjective optimization problems.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Multiobjective Control Based on Tolerance Optimization in a Multienergy System\",\"authors\":\"Suliang Ma,&nbsp;Yaxin Li,&nbsp;Yuan Jiang,&nbsp;Yiwen Wu,&nbsp;Guanglin Sha\",\"doi\":\"10.1155/2024/9991046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the issue of multiobjective control in multienergy systems with diverse operational objectives, a two-stage optimization framework based on expected point tolerance has been proposed in this paper. In the first stage, a single objective function is used for optimization control to obtain the expected point of the multiobjective optimization problem. Then, in the second stage, by defining the allowable deviation between each optimization objective and the expected point, the original multiobjective optimization problem is transformed into a single objective optimization problem solution with tolerance measurement. Finally, in the simulation scene of a multienergy system, it is demonstrated that compared with the optimal results under each single objective method, the proposed method increases power line loss, maximum voltage deviation, new energy consumption, and economy by 2.22, 2.30, 1.02, and 2.45 times, respectively. Compared with the suboptimal results, the proposed method reduces power line loss by 22.26, 1.74, 1.09, and 0.97 times, respectively. Combining the shape of the Pareto frontier, it is demonstrated that the proposed method can comprehensively consider the needs of multiple power optimization objectives for forming a more reasonable and effective system optimization scheduling and also provide a new approach for solving multiobjective optimization problems.</p>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9991046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9991046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为解决具有不同运行目标的多能源系统中的多目标控制问题,本文提出了一种基于预期点容限的两阶段优化框架。在第一阶段,使用单一目标函数进行优化控制,以获得多目标优化问题的预期点。然后,在第二阶段,通过定义各优化目标与预期点之间的允许偏差,将原来的多目标优化问题转化为带有容差测量的单目标优化问题解决方案。最后,在多能源系统的仿真场景中表明,与各单目标方法下的最优结果相比,所提出的方法使电力线损、最大电压偏差、新能源消耗和经济性分别提高了 2.22 倍、2.30 倍、1.02 倍和 2.45 倍。与次优结果相比,提出的方法分别减少了 22.26 倍、1.74 倍、1.09 倍和 0.97 倍的电力线损。结合帕累托前沿的形状,说明所提出的方法能综合考虑多个电力优化目标的需求,形成更合理有效的系统优化调度,也为解决多目标优化问题提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Multiobjective Control Based on Tolerance Optimization in a Multienergy System

To address the issue of multiobjective control in multienergy systems with diverse operational objectives, a two-stage optimization framework based on expected point tolerance has been proposed in this paper. In the first stage, a single objective function is used for optimization control to obtain the expected point of the multiobjective optimization problem. Then, in the second stage, by defining the allowable deviation between each optimization objective and the expected point, the original multiobjective optimization problem is transformed into a single objective optimization problem solution with tolerance measurement. Finally, in the simulation scene of a multienergy system, it is demonstrated that compared with the optimal results under each single objective method, the proposed method increases power line loss, maximum voltage deviation, new energy consumption, and economy by 2.22, 2.30, 1.02, and 2.45 times, respectively. Compared with the suboptimal results, the proposed method reduces power line loss by 22.26, 1.74, 1.09, and 0.97 times, respectively. Combining the shape of the Pareto frontier, it is demonstrated that the proposed method can comprehensively consider the needs of multiple power optimization objectives for forming a more reasonable and effective system optimization scheduling and also provide a new approach for solving multiobjective optimization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
期刊最新文献
Current-Limiting Strategy for Unbalanced Low-Voltage Ride Through of the SMSI-MG Based on Coordinated Control of the Generator Subunits A Scalable and Coordinated Energy Management for Electric Vehicles Based on Multiagent Reinforcement Learning Method Technoeconomic Conservation Voltage Reduction–Based Demand Response Approach to Control Distributed Power Networks A Universal Source DC–DC Boost Converter for PEMFC-Fed EV Systems With Optimization-Based MPPT Controller Optimal Scheduling Strategy of Wind–Solar–Thermal-Storage Power Energy Based on CGAN and Dynamic Line–Rated Power
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1