{"title":"随机晶格板方程的不变量:稳定性、均衡性和混合性","authors":"","doi":"10.1007/s40840-024-01685-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This article is concerned with the stability, ergodicity and mixing of invariant measures of a class of stochastic lattice plate equations with nonlinear damping driven by a family of nonlinear white noise. The polynomial growth drift term has an arbitrary order growth rate, and the diffusion term is a family of locally Lipschitz continuous functions. By modifying and improving several energy estimates of the solutions uniformly for initial data when time is large enough, we prove that the noise intensity union of all invariant measures of the stochastic equation is tight on <span> <span>\\(\\ell ^2\\times \\ell ^2\\)</span> </span>. Then, we show that the weak limit of every sequence of invariant measures in this union must be an invariant measure of the corresponding limiting equation under the locally Lipschitz assumptions on the drift and diffusion terms. Under some globally Lipschitz conditions on the drift and diffusion terms, we also prove that every invariant measure of the stochastic equation must be ergodic and exponentially mixing in the pointwise and Wasserstein metric sense.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"94 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant Measures of Stochastic Lattice Plate Equations: Stability, Ergodicity and Mixing\",\"authors\":\"\",\"doi\":\"10.1007/s40840-024-01685-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This article is concerned with the stability, ergodicity and mixing of invariant measures of a class of stochastic lattice plate equations with nonlinear damping driven by a family of nonlinear white noise. The polynomial growth drift term has an arbitrary order growth rate, and the diffusion term is a family of locally Lipschitz continuous functions. By modifying and improving several energy estimates of the solutions uniformly for initial data when time is large enough, we prove that the noise intensity union of all invariant measures of the stochastic equation is tight on <span> <span>\\\\(\\\\ell ^2\\\\times \\\\ell ^2\\\\)</span> </span>. Then, we show that the weak limit of every sequence of invariant measures in this union must be an invariant measure of the corresponding limiting equation under the locally Lipschitz assumptions on the drift and diffusion terms. Under some globally Lipschitz conditions on the drift and diffusion terms, we also prove that every invariant measure of the stochastic equation must be ergodic and exponentially mixing in the pointwise and Wasserstein metric sense.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01685-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01685-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Invariant Measures of Stochastic Lattice Plate Equations: Stability, Ergodicity and Mixing
Abstract
This article is concerned with the stability, ergodicity and mixing of invariant measures of a class of stochastic lattice plate equations with nonlinear damping driven by a family of nonlinear white noise. The polynomial growth drift term has an arbitrary order growth rate, and the diffusion term is a family of locally Lipschitz continuous functions. By modifying and improving several energy estimates of the solutions uniformly for initial data when time is large enough, we prove that the noise intensity union of all invariant measures of the stochastic equation is tight on \(\ell ^2\times \ell ^2\). Then, we show that the weak limit of every sequence of invariant measures in this union must be an invariant measure of the corresponding limiting equation under the locally Lipschitz assumptions on the drift and diffusion terms. Under some globally Lipschitz conditions on the drift and diffusion terms, we also prove that every invariant measure of the stochastic equation must be ergodic and exponentially mixing in the pointwise and Wasserstein metric sense.
期刊介绍:
This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.