具有平滑激活函数的深度里兹方法的泛化误差

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Communications in Computational Physics Pub Date : 2024-04-01 DOI:10.4208/cicp.oa-2023-0253
Janne Siipola
{"title":"具有平滑激活函数的深度里兹方法的泛化误差","authors":"Janne Siipola","doi":"10.4208/cicp.oa-2023-0253","DOIUrl":null,"url":null,"abstract":"Deep Ritz method is a deep learning paradigm to solve partial differential\nequations. In this article we study the generalization error of the Deep Ritz method.\nWe focus on the quintessential problem which is the Poisson’s equation. We show that\ngeneralization error of the Deep Ritz method converges to zero with rate $\\frac{C}{\\sqrt{n}},$ and we\ndiscuss about the constant $C.$ Results are obtained for shallow and residual neural\nnetworks with smooth activation functions.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"117 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization Error in the Deep Ritz Method with Smooth Activation Functions\",\"authors\":\"Janne Siipola\",\"doi\":\"10.4208/cicp.oa-2023-0253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Ritz method is a deep learning paradigm to solve partial differential\\nequations. In this article we study the generalization error of the Deep Ritz method.\\nWe focus on the quintessential problem which is the Poisson’s equation. We show that\\ngeneralization error of the Deep Ritz method converges to zero with rate $\\\\frac{C}{\\\\sqrt{n}},$ and we\\ndiscuss about the constant $C.$ Results are obtained for shallow and residual neural\\nnetworks with smooth activation functions.\",\"PeriodicalId\":50661,\"journal\":{\"name\":\"Communications in Computational Physics\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4208/cicp.oa-2023-0253\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0253","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Deep Ritz 方法是一种解决偏微分方程的深度学习范式。本文研究了 Deep Ritz 方法的泛化误差。我们证明了深度里兹方法的泛化误差以$frac{C}{sqrt{n}}的速率收敛为零,并讨论了常数$C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalization Error in the Deep Ritz Method with Smooth Activation Functions
Deep Ritz method is a deep learning paradigm to solve partial differential equations. In this article we study the generalization error of the Deep Ritz method. We focus on the quintessential problem which is the Poisson’s equation. We show that generalization error of the Deep Ritz method converges to zero with rate $\frac{C}{\sqrt{n}},$ and we discuss about the constant $C.$ Results are obtained for shallow and residual neural networks with smooth activation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
期刊最新文献
A Model-Data Asymptotic-Preserving Neural Network Method Based on Micro-Macro Decomposition for Gray Radiative Transfer Equations A Causality-DeepONet for Causal Responses of Linear Dynamical Systems JefiPIC: A 3-D Full Electromagnetic Particle-in-Cell Simulator Based on Jefimenko’s Equations on GPU A Comparative Study of Hydrodynamic Lattice Boltzmann Equation in Phase-Field-Based Multiphase Flow Models Finite-Volume TENO Scheme with a New Cell-Interface Flux Evaluation Strategy for Unstructured Meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1