Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang
{"title":"伪量子纠缠并不便宜","authors":"Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang","doi":"arxiv-2404.00126","DOIUrl":null,"url":null,"abstract":"We show that any pseudoentangled state ensemble with a gap of $t$ bits of\nentropy requires $\\Omega(t)$ non-Clifford gates to prepare. This bound is tight\nup to polylogarithmic factors if linear-time quantum-secure pseudorandom\nfunctions exist. Our result follows from a polynomial-time algorithm to\nestimate the entanglement entropy of a quantum state across any cut of qubits.\nWhen run on an $n$-qubit state that is stabilized by at least $2^{n-t}$ Pauli\noperators, our algorithm produces an estimate that is within an additive factor\nof $\\frac{t}{2}$ bits of the true entanglement entropy.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudoentanglement Ain't Cheap\",\"authors\":\"Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang\",\"doi\":\"arxiv-2404.00126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that any pseudoentangled state ensemble with a gap of $t$ bits of\\nentropy requires $\\\\Omega(t)$ non-Clifford gates to prepare. This bound is tight\\nup to polylogarithmic factors if linear-time quantum-secure pseudorandom\\nfunctions exist. Our result follows from a polynomial-time algorithm to\\nestimate the entanglement entropy of a quantum state across any cut of qubits.\\nWhen run on an $n$-qubit state that is stabilized by at least $2^{n-t}$ Pauli\\noperators, our algorithm produces an estimate that is within an additive factor\\nof $\\\\frac{t}{2}$ bits of the true entanglement entropy.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.00126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that any pseudoentangled state ensemble with a gap of $t$ bits of
entropy requires $\Omega(t)$ non-Clifford gates to prepare. This bound is tight
up to polylogarithmic factors if linear-time quantum-secure pseudorandom
functions exist. Our result follows from a polynomial-time algorithm to
estimate the entanglement entropy of a quantum state across any cut of qubits.
When run on an $n$-qubit state that is stabilized by at least $2^{n-t}$ Pauli
operators, our algorithm produces an estimate that is within an additive factor
of $\frac{t}{2}$ bits of the true entanglement entropy.