Andrew O. Rubio, Adam M. M. Stuckert, Troy M. LaPolice, T. Jeffrey Cole, Kyle Summers
{"title":"压力之下:毒蛙属颜色相关基因的选择证据","authors":"Andrew O. Rubio, Adam M. M. Stuckert, Troy M. LaPolice, T. Jeffrey Cole, Kyle Summers","doi":"10.1007/s10682-024-10297-1","DOIUrl":null,"url":null,"abstract":"<p>Aposematic organisms rely on their bright conspicuous coloration to communicate to potential predators that they are toxic and unpalatable. These aposematic phenotypes are strongly tied to survival and therefore make excellent opportunities to investigate the genetic underpinning of coloration. The genus <i>Ranitomeya</i> includes phenotypically diverse members of Neotropical aposematic poison frogs native to South America. Significant progress has been made in elucidating the molecular mechanisms responsible for aposematic coloration in poison frogs, which have paved the way for future studies to test hypotheses of the evolution of coloration across aposematic vertebrates. However, very little is known about whether these color related genes are under positive selection. We assembled transcriptomes from publicly available data reads sets for 9 different color morphs of poison frogs in the <i>Ranitomeya</i> genus that display bright conspicuous coloration (four morphs of <i>R. imitator</i>, two morphs of <i>R. variabilis</i>, two morphs of <i>R. fantastica</i>, one morph of <i>R. summersi</i>) to identify protein-coding genes responsible for color production that are under positive selection. Our results show that there are multiple genes under strong positive selection that are predicted to play roles in melanin synthesis (<i>dct, tyrp1, irf4</i>), iridophore development (<i>fhl1</i>), keratin metabolism (<i>ovol1</i>), pteridine synthesis (<i>prps1</i>, <i>xdh</i>), and carotenoid metabolism (<i>adh1b, aldh2</i>). The identification of positive selection affecting candidate color-pattern genes is consistent with the possibility that these genes mediate (in part) the molecular evolution of coloration. This may be attributed to aposematic phenotypes being directly tied to survival and reproduction in poison frogs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Under pressure: evidence for selection on color-related genes in poison frogs of the genus Ranitomeya\",\"authors\":\"Andrew O. Rubio, Adam M. M. Stuckert, Troy M. LaPolice, T. Jeffrey Cole, Kyle Summers\",\"doi\":\"10.1007/s10682-024-10297-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aposematic organisms rely on their bright conspicuous coloration to communicate to potential predators that they are toxic and unpalatable. These aposematic phenotypes are strongly tied to survival and therefore make excellent opportunities to investigate the genetic underpinning of coloration. The genus <i>Ranitomeya</i> includes phenotypically diverse members of Neotropical aposematic poison frogs native to South America. Significant progress has been made in elucidating the molecular mechanisms responsible for aposematic coloration in poison frogs, which have paved the way for future studies to test hypotheses of the evolution of coloration across aposematic vertebrates. However, very little is known about whether these color related genes are under positive selection. We assembled transcriptomes from publicly available data reads sets for 9 different color morphs of poison frogs in the <i>Ranitomeya</i> genus that display bright conspicuous coloration (four morphs of <i>R. imitator</i>, two morphs of <i>R. variabilis</i>, two morphs of <i>R. fantastica</i>, one morph of <i>R. summersi</i>) to identify protein-coding genes responsible for color production that are under positive selection. Our results show that there are multiple genes under strong positive selection that are predicted to play roles in melanin synthesis (<i>dct, tyrp1, irf4</i>), iridophore development (<i>fhl1</i>), keratin metabolism (<i>ovol1</i>), pteridine synthesis (<i>prps1</i>, <i>xdh</i>), and carotenoid metabolism (<i>adh1b, aldh2</i>). The identification of positive selection affecting candidate color-pattern genes is consistent with the possibility that these genes mediate (in part) the molecular evolution of coloration. This may be attributed to aposematic phenotypes being directly tied to survival and reproduction in poison frogs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10682-024-10297-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10682-024-10297-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Under pressure: evidence for selection on color-related genes in poison frogs of the genus Ranitomeya
Aposematic organisms rely on their bright conspicuous coloration to communicate to potential predators that they are toxic and unpalatable. These aposematic phenotypes are strongly tied to survival and therefore make excellent opportunities to investigate the genetic underpinning of coloration. The genus Ranitomeya includes phenotypically diverse members of Neotropical aposematic poison frogs native to South America. Significant progress has been made in elucidating the molecular mechanisms responsible for aposematic coloration in poison frogs, which have paved the way for future studies to test hypotheses of the evolution of coloration across aposematic vertebrates. However, very little is known about whether these color related genes are under positive selection. We assembled transcriptomes from publicly available data reads sets for 9 different color morphs of poison frogs in the Ranitomeya genus that display bright conspicuous coloration (four morphs of R. imitator, two morphs of R. variabilis, two morphs of R. fantastica, one morph of R. summersi) to identify protein-coding genes responsible for color production that are under positive selection. Our results show that there are multiple genes under strong positive selection that are predicted to play roles in melanin synthesis (dct, tyrp1, irf4), iridophore development (fhl1), keratin metabolism (ovol1), pteridine synthesis (prps1, xdh), and carotenoid metabolism (adh1b, aldh2). The identification of positive selection affecting candidate color-pattern genes is consistent with the possibility that these genes mediate (in part) the molecular evolution of coloration. This may be attributed to aposematic phenotypes being directly tied to survival and reproduction in poison frogs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.