Pengyang Shao, Le Wu, Kun Zhang, Defu Lian, Richang Hong, Yong Li, Meng Wang
{"title":"协同过滤的平均用户侧反事实公平性","authors":"Pengyang Shao, Le Wu, Kun Zhang, Defu Lian, Richang Hong, Yong Li, Meng Wang","doi":"10.1145/3656639","DOIUrl":null,"url":null,"abstract":"<p>Recently, the user-side fairness issue in Collaborative Filtering (CF) algorithms has gained considerable attention, arguing that results should not discriminate an individual or a sub user group based on users’ sensitive attributes (e.g., gender). Researchers have proposed fairness-aware CF models by decreasing statistical associations between predictions and sensitive attributes. A more natural idea is to achieve model fairness from a causal perspective. The remaining challenge is that we have no access to interventions, i.e., the counterfactual world that produces recommendations when each user have changed the sensitive attribute value. To this end, we first borrow the Rubin-Neyman potential outcome framework to define average causal effects of sensitive attributes. Then, we show that removing causal effects of sensitive attributes is equal to average counterfactual fairness in CF. Then, we use the propensity re-weighting paradigm to estimate the average causal effects of sensitive attributes and formulate the estimated causal effects as an additional regularization term. To the best of our knowledge, we are one of the first few attempts to achieve counterfactual fairness from the causal effect estimation perspective in CF, which frees us from building sophisticated causal graph. Finally, experiments on three real-world datasets show the superiority of our proposed model.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"63 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average User-side Counterfactual Fairness for Collaborative Filtering\",\"authors\":\"Pengyang Shao, Le Wu, Kun Zhang, Defu Lian, Richang Hong, Yong Li, Meng Wang\",\"doi\":\"10.1145/3656639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the user-side fairness issue in Collaborative Filtering (CF) algorithms has gained considerable attention, arguing that results should not discriminate an individual or a sub user group based on users’ sensitive attributes (e.g., gender). Researchers have proposed fairness-aware CF models by decreasing statistical associations between predictions and sensitive attributes. A more natural idea is to achieve model fairness from a causal perspective. The remaining challenge is that we have no access to interventions, i.e., the counterfactual world that produces recommendations when each user have changed the sensitive attribute value. To this end, we first borrow the Rubin-Neyman potential outcome framework to define average causal effects of sensitive attributes. Then, we show that removing causal effects of sensitive attributes is equal to average counterfactual fairness in CF. Then, we use the propensity re-weighting paradigm to estimate the average causal effects of sensitive attributes and formulate the estimated causal effects as an additional regularization term. To the best of our knowledge, we are one of the first few attempts to achieve counterfactual fairness from the causal effect estimation perspective in CF, which frees us from building sophisticated causal graph. Finally, experiments on three real-world datasets show the superiority of our proposed model.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656639\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656639","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Average User-side Counterfactual Fairness for Collaborative Filtering
Recently, the user-side fairness issue in Collaborative Filtering (CF) algorithms has gained considerable attention, arguing that results should not discriminate an individual or a sub user group based on users’ sensitive attributes (e.g., gender). Researchers have proposed fairness-aware CF models by decreasing statistical associations between predictions and sensitive attributes. A more natural idea is to achieve model fairness from a causal perspective. The remaining challenge is that we have no access to interventions, i.e., the counterfactual world that produces recommendations when each user have changed the sensitive attribute value. To this end, we first borrow the Rubin-Neyman potential outcome framework to define average causal effects of sensitive attributes. Then, we show that removing causal effects of sensitive attributes is equal to average counterfactual fairness in CF. Then, we use the propensity re-weighting paradigm to estimate the average causal effects of sensitive attributes and formulate the estimated causal effects as an additional regularization term. To the best of our knowledge, we are one of the first few attempts to achieve counterfactual fairness from the causal effect estimation perspective in CF, which frees us from building sophisticated causal graph. Finally, experiments on three real-world datasets show the superiority of our proposed model.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.