利用弱监督深度学习对常规肿瘤活检进行原发性肝癌分类

Aurélie Beaufrère, Nora Ouzir, Paul Emile Zafar, Astrid Laurent-Bellue, Miguel Albuquerque, Gwladys Lubuela, Jules Grégory, Catherine Guettier, Kévin Mondet, Jean-Christophe Pesquet, Valérie Paradis
{"title":"利用弱监督深度学习对常规肿瘤活检进行原发性肝癌分类","authors":"Aurélie Beaufrère, Nora Ouzir, Paul Emile Zafar, Astrid Laurent-Bellue, Miguel Albuquerque, Gwladys Lubuela, Jules Grégory, Catherine Guettier, Kévin Mondet, Jean-Christophe Pesquet, Valérie Paradis","doi":"arxiv-2404.04983","DOIUrl":null,"url":null,"abstract":"The diagnosis of primary liver cancers (PLCs) can be challenging, especially\non biopsies and for combined hepatocellular-cholangiocarcinoma (cHCC-CCA). We\nautomatically classified PLCs on routine-stained biopsies using a weakly\nsupervised learning method. Weak tumour/non-tumour annotations served as labels\nfor training a Resnet18 neural network, and the network's last convolutional\nlayer was used to extract new tumour tile features. Without knowledge of the\nprecise labels of the malignancies, we then applied an unsupervised clustering\nalgorithm. Our model identified specific features of hepatocellular carcinoma\n(HCC) and intrahepatic cholangiocarcinoma (iCCA). Despite no specific features\nof cHCC-CCA being recognized, the identification of HCC and iCCA tiles within a\nslide could facilitate the diagnosis of primary liver cancers, particularly\ncHCC-CCA. Method and results: 166 PLC biopsies were divided into training, internal and\nexternal validation sets: 90, 29 and 47 samples. Two liver pathologists\nreviewed each whole-slide hematein eosin saffron (HES)-stained image (WSI).\nAfter annotating the tumour/non-tumour areas, 256x256 pixel tiles were\nextracted from the WSIs and used to train a ResNet18. The network was used to\nextract new tile features. An unsupervised clustering algorithm was then\napplied to the new tile features. In a two-cluster model, Clusters 0 and 1\ncontained mainly HCC and iCCA histological features. The diagnostic agreement\nbetween the pathological diagnosis and the model predictions in the internal\nand external validation sets was 100% (11/11) and 96% (25/26) for HCC and 78%\n(7/9) and 87% (13/15) for iCCA, respectively. For cHCC-CCA, we observed a\nhighly variable proportion of tiles from each cluster (Cluster 0: 5-97%;\nCluster 1: 2-94%).","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primary liver cancer classification from routine tumour biopsy using weakly supervised deep learning\",\"authors\":\"Aurélie Beaufrère, Nora Ouzir, Paul Emile Zafar, Astrid Laurent-Bellue, Miguel Albuquerque, Gwladys Lubuela, Jules Grégory, Catherine Guettier, Kévin Mondet, Jean-Christophe Pesquet, Valérie Paradis\",\"doi\":\"arxiv-2404.04983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diagnosis of primary liver cancers (PLCs) can be challenging, especially\\non biopsies and for combined hepatocellular-cholangiocarcinoma (cHCC-CCA). We\\nautomatically classified PLCs on routine-stained biopsies using a weakly\\nsupervised learning method. Weak tumour/non-tumour annotations served as labels\\nfor training a Resnet18 neural network, and the network's last convolutional\\nlayer was used to extract new tumour tile features. Without knowledge of the\\nprecise labels of the malignancies, we then applied an unsupervised clustering\\nalgorithm. Our model identified specific features of hepatocellular carcinoma\\n(HCC) and intrahepatic cholangiocarcinoma (iCCA). Despite no specific features\\nof cHCC-CCA being recognized, the identification of HCC and iCCA tiles within a\\nslide could facilitate the diagnosis of primary liver cancers, particularly\\ncHCC-CCA. Method and results: 166 PLC biopsies were divided into training, internal and\\nexternal validation sets: 90, 29 and 47 samples. Two liver pathologists\\nreviewed each whole-slide hematein eosin saffron (HES)-stained image (WSI).\\nAfter annotating the tumour/non-tumour areas, 256x256 pixel tiles were\\nextracted from the WSIs and used to train a ResNet18. The network was used to\\nextract new tile features. An unsupervised clustering algorithm was then\\napplied to the new tile features. In a two-cluster model, Clusters 0 and 1\\ncontained mainly HCC and iCCA histological features. The diagnostic agreement\\nbetween the pathological diagnosis and the model predictions in the internal\\nand external validation sets was 100% (11/11) and 96% (25/26) for HCC and 78%\\n(7/9) and 87% (13/15) for iCCA, respectively. For cHCC-CCA, we observed a\\nhighly variable proportion of tiles from each cluster (Cluster 0: 5-97%;\\nCluster 1: 2-94%).\",\"PeriodicalId\":501572,\"journal\":{\"name\":\"arXiv - QuanBio - Tissues and Organs\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Tissues and Organs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.04983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.04983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原发性肝癌(PLC)的诊断具有挑战性,尤其是活组织检查和肝细胞胆管癌(cHCC-CCA)的诊断。我们采用弱监督学习方法,对常规染色活检样本上的原发性肝癌进行了分类。弱肿瘤/非肿瘤注释作为训练 Resnet18 神经网络的标签,网络的最后一个卷积层用于提取新的肿瘤瓦片特征。在不知道恶性肿瘤精确标签的情况下,我们采用了无监督聚类算法。我们的模型识别出了肝细胞癌(HCC)和肝内胆管癌(iCCA)的特定特征。尽管没有识别出 cHCC-CCA 的具体特征,但识别出滑动片中的 HCC 和 iCCA 瓦片有助于诊断原发性肝癌,尤其是 cHCC-CCA。方法和结果:将 166 份 PLC 活检样本分为训练集、内部集和外部验证集:分别为 90、29 和 47 份样本。两名肝脏病理学家对每张整张血红素藏红花(HES)染色图像(WSI)进行了审查。在标注肿瘤/非肿瘤区域后,从 WSI 中提取了 256x256 像素瓦片,用于训练 ResNet18。该网络用于提取新的瓦片特征。然后将无监督聚类算法应用于新的瓦片特征。在双簇模型中,簇 0 和簇 1 主要包含 HCC 和 iCCA 组织学特征。在内部和外部验证集中,病理诊断与模型预测的诊断一致性分别为:HCC 100%(11/11)和 96%(25/26),iCCA 78%(7/9)和 87%(13/15)。对于 cHCC-CCA,我们观察到每个群组的瓦片比例差异很大(群组 0:5-97%;群组 1:2-94%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Primary liver cancer classification from routine tumour biopsy using weakly supervised deep learning
The diagnosis of primary liver cancers (PLCs) can be challenging, especially on biopsies and for combined hepatocellular-cholangiocarcinoma (cHCC-CCA). We automatically classified PLCs on routine-stained biopsies using a weakly supervised learning method. Weak tumour/non-tumour annotations served as labels for training a Resnet18 neural network, and the network's last convolutional layer was used to extract new tumour tile features. Without knowledge of the precise labels of the malignancies, we then applied an unsupervised clustering algorithm. Our model identified specific features of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Despite no specific features of cHCC-CCA being recognized, the identification of HCC and iCCA tiles within a slide could facilitate the diagnosis of primary liver cancers, particularly cHCC-CCA. Method and results: 166 PLC biopsies were divided into training, internal and external validation sets: 90, 29 and 47 samples. Two liver pathologists reviewed each whole-slide hematein eosin saffron (HES)-stained image (WSI). After annotating the tumour/non-tumour areas, 256x256 pixel tiles were extracted from the WSIs and used to train a ResNet18. The network was used to extract new tile features. An unsupervised clustering algorithm was then applied to the new tile features. In a two-cluster model, Clusters 0 and 1 contained mainly HCC and iCCA histological features. The diagnostic agreement between the pathological diagnosis and the model predictions in the internal and external validation sets was 100% (11/11) and 96% (25/26) for HCC and 78% (7/9) and 87% (13/15) for iCCA, respectively. For cHCC-CCA, we observed a highly variable proportion of tiles from each cluster (Cluster 0: 5-97%; Cluster 1: 2-94%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1