P.A. Figueiredo, R. Jorge, J. Ferreira, P. Rodrigues
{"title":"优化准对称恒星器平衡中的能量粒子追踪","authors":"P.A. Figueiredo, R. Jorge, J. Ferreira, P. Rodrigues","doi":"10.1017/s0022377824000400","DOIUrl":null,"url":null,"abstract":"Recent developments in the design of magnetic confinement fusion devices have allowed the construction of exceptionally optimized stellarator configurations. The near-axis expansion in particular has been proven to enable the construction of magnetic configurations with good confinement properties while taking only a fraction of the usual computation time to generate optimized magnetic equilibria. However, not much is known about the overall features of fast-particle orbits computed in such analytical, yet simplified, equilibria when compared with those originating from accurate equilibrium solutions. This work aims to assess and demonstrate the potential of the near-axis expansion to provide accurate information on particle orbits and to compute loss fractions in moderate to high aspect ratios. The configurations used here are all scaled to fusion-relevant parameters and approximate quasi-symmetry to various degrees. This allows us to understand how deviations from quasi-symmetry affect particle orbits and what are their effects on the estimation of the loss fraction. Guiding-centre trajectories of fusion-born alpha particles are traced using gyronimo and SIMPLE codes under the NEAT framework, showing good numerical agreement. Discrepancies between near-axis and magnetohydrodynamic fields have minor effects on passing particles but significant effects on trapped particles, especially in quasi-helically symmetric magnetic fields. Effective expressions were found for estimating orbit widths and passing–trapped separatrix in quasi-symmetric near-axis fields. Loss fractions agree in the prompt losses regime but diverge afterwards.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energetic particle tracing in optimized quasi-symmetric stellarator equilibria\",\"authors\":\"P.A. Figueiredo, R. Jorge, J. Ferreira, P. Rodrigues\",\"doi\":\"10.1017/s0022377824000400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in the design of magnetic confinement fusion devices have allowed the construction of exceptionally optimized stellarator configurations. The near-axis expansion in particular has been proven to enable the construction of magnetic configurations with good confinement properties while taking only a fraction of the usual computation time to generate optimized magnetic equilibria. However, not much is known about the overall features of fast-particle orbits computed in such analytical, yet simplified, equilibria when compared with those originating from accurate equilibrium solutions. This work aims to assess and demonstrate the potential of the near-axis expansion to provide accurate information on particle orbits and to compute loss fractions in moderate to high aspect ratios. The configurations used here are all scaled to fusion-relevant parameters and approximate quasi-symmetry to various degrees. This allows us to understand how deviations from quasi-symmetry affect particle orbits and what are their effects on the estimation of the loss fraction. Guiding-centre trajectories of fusion-born alpha particles are traced using gyronimo and SIMPLE codes under the NEAT framework, showing good numerical agreement. Discrepancies between near-axis and magnetohydrodynamic fields have minor effects on passing particles but significant effects on trapped particles, especially in quasi-helically symmetric magnetic fields. Effective expressions were found for estimating orbit widths and passing–trapped separatrix in quasi-symmetric near-axis fields. Loss fractions agree in the prompt losses regime but diverge afterwards.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000400\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000400","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Energetic particle tracing in optimized quasi-symmetric stellarator equilibria
Recent developments in the design of magnetic confinement fusion devices have allowed the construction of exceptionally optimized stellarator configurations. The near-axis expansion in particular has been proven to enable the construction of magnetic configurations with good confinement properties while taking only a fraction of the usual computation time to generate optimized magnetic equilibria. However, not much is known about the overall features of fast-particle orbits computed in such analytical, yet simplified, equilibria when compared with those originating from accurate equilibrium solutions. This work aims to assess and demonstrate the potential of the near-axis expansion to provide accurate information on particle orbits and to compute loss fractions in moderate to high aspect ratios. The configurations used here are all scaled to fusion-relevant parameters and approximate quasi-symmetry to various degrees. This allows us to understand how deviations from quasi-symmetry affect particle orbits and what are their effects on the estimation of the loss fraction. Guiding-centre trajectories of fusion-born alpha particles are traced using gyronimo and SIMPLE codes under the NEAT framework, showing good numerical agreement. Discrepancies between near-axis and magnetohydrodynamic fields have minor effects on passing particles but significant effects on trapped particles, especially in quasi-helically symmetric magnetic fields. Effective expressions were found for estimating orbit widths and passing–trapped separatrix in quasi-symmetric near-axis fields. Loss fractions agree in the prompt losses regime but diverge afterwards.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.