探索锥形微通道电渗蠕动中的微动效应和温度变化

Sidra Batool, Saima Noreen, Ali J. Chamkha
{"title":"探索锥形微通道电渗蠕动中的微动效应和温度变化","authors":"Sidra Batool, Saima Noreen, Ali J. Chamkha","doi":"10.1002/zamm.202300779","DOIUrl":null,"url":null,"abstract":"The current study is based on the effects of microrotational dynamics, microinertial effects, and temperature changes on electroosmotic peristalsis in a tapered microchannel. This has been addressed by an analytical study of heat transfer in the setting of electroosmotic peristaltic flow involving a micropolar fluid, specifically considering a symmetrically tapered channel. The Navier–Stokes equation, the Poisson–Boltzmann equation, the energy equation, and the micropolar fluid model are all included in the mathematical model. On the flow and temperature fields, a thorough parametric analysis is carried out, investigating the impacts of numerous variables, including the micropolar parameter, Prandtl number, Brinkman number, Grashof number, thermal conductivity ratio, and channel aspect ratio. The findings show that peristalsis and electroosmosis both contribute to higher heat transfer rates. Notably, the electroosmotic parameter and Brinkman number have a substantial impact on the distribution of temperature. The micropolar parameter and Brinkman number have a significant effect on the flow and temperature fields. Furthermore, electrokinetic phenomena are crucial in controlling the axial and spin velocities of the micropolar fluid. These findings have significant ramifications for the design and optimization of microfluidic devices in engineering and biomedical applications that employ the electroosmotic peristaltic flow of micropolar fluids.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring microrotational effects and temperature variations in electroosmotic peristalsis in tapered microchannel\",\"authors\":\"Sidra Batool, Saima Noreen, Ali J. Chamkha\",\"doi\":\"10.1002/zamm.202300779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study is based on the effects of microrotational dynamics, microinertial effects, and temperature changes on electroosmotic peristalsis in a tapered microchannel. This has been addressed by an analytical study of heat transfer in the setting of electroosmotic peristaltic flow involving a micropolar fluid, specifically considering a symmetrically tapered channel. The Navier–Stokes equation, the Poisson–Boltzmann equation, the energy equation, and the micropolar fluid model are all included in the mathematical model. On the flow and temperature fields, a thorough parametric analysis is carried out, investigating the impacts of numerous variables, including the micropolar parameter, Prandtl number, Brinkman number, Grashof number, thermal conductivity ratio, and channel aspect ratio. The findings show that peristalsis and electroosmosis both contribute to higher heat transfer rates. Notably, the electroosmotic parameter and Brinkman number have a substantial impact on the distribution of temperature. The micropolar parameter and Brinkman number have a significant effect on the flow and temperature fields. Furthermore, electrokinetic phenomena are crucial in controlling the axial and spin velocities of the micropolar fluid. These findings have significant ramifications for the design and optimization of microfluidic devices in engineering and biomedical applications that employ the electroosmotic peristaltic flow of micropolar fluids.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究基于微运动动力学、微惯性效应和温度变化对锥形微通道中电渗透蠕动的影响。在涉及微极性流体的电渗蠕动流中,特别是在考虑对称锥形通道的情况下,通过对热传递的分析研究解决了这一问题。数学模型中包括纳维-斯托克斯方程、泊松-波尔兹曼方程、能量方程和微极流体模型。对流场和温度场进行了全面的参数分析,研究了众多变量的影响,包括微波参数、普朗特数、布林克曼数、格拉肖夫数、导热比和通道长宽比。研究结果表明,蠕动和电渗透都有助于提高传热率。值得注意的是,电渗参数和布林克曼数对温度分布有很大影响。微波参数和布林克曼数对流场和温度场也有显著影响。此外,电动现象对于控制微波流体的轴向速度和自旋速度至关重要。这些发现对工程和生物医学应用中采用微极流体的电渗蠕动流的微流体设备的设计和优化具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring microrotational effects and temperature variations in electroosmotic peristalsis in tapered microchannel
The current study is based on the effects of microrotational dynamics, microinertial effects, and temperature changes on electroosmotic peristalsis in a tapered microchannel. This has been addressed by an analytical study of heat transfer in the setting of electroosmotic peristaltic flow involving a micropolar fluid, specifically considering a symmetrically tapered channel. The Navier–Stokes equation, the Poisson–Boltzmann equation, the energy equation, and the micropolar fluid model are all included in the mathematical model. On the flow and temperature fields, a thorough parametric analysis is carried out, investigating the impacts of numerous variables, including the micropolar parameter, Prandtl number, Brinkman number, Grashof number, thermal conductivity ratio, and channel aspect ratio. The findings show that peristalsis and electroosmosis both contribute to higher heat transfer rates. Notably, the electroosmotic parameter and Brinkman number have a substantial impact on the distribution of temperature. The micropolar parameter and Brinkman number have a significant effect on the flow and temperature fields. Furthermore, electrokinetic phenomena are crucial in controlling the axial and spin velocities of the micropolar fluid. These findings have significant ramifications for the design and optimization of microfluidic devices in engineering and biomedical applications that employ the electroosmotic peristaltic flow of micropolar fluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow around a slender body with sharp edges Heat transfer analysis of a peristaltically induced creeping magnetohydrodynamic flow through an inclined annulus using homotopy perturbation method Mathematical modeling of convective heat transfer enhancement using circular cylinders in an inverted T‐shaped porous enclosure Numerical simulation of melting heat transport mechanism of Cross nanofluid with multiple features of infinite shear rate over a Falkner‐Skan wedge surface Wave scattering in a cracked exponentially graded magnetoelectroelastic half‐plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1