抑郁检测的测试时间训练

Sri Harsha Dumpala, Chandramouli Shama Sastry, Rudolf Uher, Sageev Oore
{"title":"抑郁检测的测试时间训练","authors":"Sri Harsha Dumpala, Chandramouli Shama Sastry, Rudolf Uher, Sageev Oore","doi":"arxiv-2404.05071","DOIUrl":null,"url":null,"abstract":"Previous works on depression detection use datasets collected in similar\nenvironments to train and test the models. In practice, however, the train and\ntest distributions cannot be guaranteed to be identical. Distribution shifts\ncan be introduced due to variations such as recording environment (e.g.,\nbackground noise) and demographics (e.g., gender, age, etc). Such\ndistributional shifts can surprisingly lead to severe performance degradation\nof the depression detection models. In this paper, we analyze the application\nof test-time training (TTT) to improve robustness of models trained for\ndepression detection. When compared to regular testing of the models, we find\nTTT can significantly improve the robustness of the model under a variety of\ndistributional shifts introduced due to: (a) background-noise, (b) gender-bias,\nand (c) data collection and curation procedure (i.e., train and test samples\nare from separate datasets).","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test-Time Training for Depression Detection\",\"authors\":\"Sri Harsha Dumpala, Chandramouli Shama Sastry, Rudolf Uher, Sageev Oore\",\"doi\":\"arxiv-2404.05071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous works on depression detection use datasets collected in similar\\nenvironments to train and test the models. In practice, however, the train and\\ntest distributions cannot be guaranteed to be identical. Distribution shifts\\ncan be introduced due to variations such as recording environment (e.g.,\\nbackground noise) and demographics (e.g., gender, age, etc). Such\\ndistributional shifts can surprisingly lead to severe performance degradation\\nof the depression detection models. In this paper, we analyze the application\\nof test-time training (TTT) to improve robustness of models trained for\\ndepression detection. When compared to regular testing of the models, we find\\nTTT can significantly improve the robustness of the model under a variety of\\ndistributional shifts introduced due to: (a) background-noise, (b) gender-bias,\\nand (c) data collection and curation procedure (i.e., train and test samples\\nare from separate datasets).\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.05071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.05071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以前的抑郁检测工作使用在相似环境中收集的数据集来训练和测试模型。但实际上,训练和测试的分布并不能保证完全相同。由于记录环境(如背景噪声)和人口统计学(如性别、年龄等)等因素的变化,可能会导致分布偏移。这种分布偏移竟然会导致抑郁检测模型的性能严重下降。在本文中,我们分析了如何应用测试时间训练(TTT)来提高抑郁检测模型的鲁棒性。与对模型的常规测试相比,我们发现在由于以下原因导致的各种分布偏移情况下,TTT 可以显著提高模型的鲁棒性:(a) 背景噪声,(b) 性别偏差,(c) 数据收集和整理程序(即训练样本和测试样本来自不同的数据集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test-Time Training for Depression Detection
Previous works on depression detection use datasets collected in similar environments to train and test the models. In practice, however, the train and test distributions cannot be guaranteed to be identical. Distribution shifts can be introduced due to variations such as recording environment (e.g., background noise) and demographics (e.g., gender, age, etc). Such distributional shifts can surprisingly lead to severe performance degradation of the depression detection models. In this paper, we analyze the application of test-time training (TTT) to improve robustness of models trained for depression detection. When compared to regular testing of the models, we find TTT can significantly improve the robustness of the model under a variety of distributional shifts introduced due to: (a) background-noise, (b) gender-bias, and (c) data collection and curation procedure (i.e., train and test samples are from separate datasets).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1