{"title":"基于氧化石墨烯/MnO 2 :h-MoO 3 颗粒的新型复合电极,用于对乙酰氨基酚的方波伏安法测定","authors":"Merve Aktürk, Zekerya Dursun","doi":"10.1002/elan.202400042","DOIUrl":null,"url":null,"abstract":"<p>A novel composite electrode was developed based on graphene oxide (GO)/MnO<sub>2</sub>:h-MoO<sub>3</sub> nanocomposite for sensitive and selective voltammetric detection of acetaminophen (ACP). The composite electrode materials were characterized using X-Ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) techniques. In the optimum conditions, the oxidation peak current (<i>I<sub>pa</sub></i>) of ACP was increased linearly with its concentration over two linear ranges from 0.06 to 10.0 μmol L<sup>−1</sup> and 20.0 to 80.0 μmol L<sup>−1</sup> with a detection limit of 0.0133 μmol L<sup>−1</sup>. Due to its higher selectivity and long term stability, the composite electrode was applied to the detection of ACP in pharmaceutical formulations.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"36 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elan.202400042","citationCount":"0","resultStr":"{\"title\":\"A novel composite electrode based on graphene oxide/MnO2:h-MoO3 particles for square wave voltammetric determination of acetaminophen\",\"authors\":\"Merve Aktürk, Zekerya Dursun\",\"doi\":\"10.1002/elan.202400042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel composite electrode was developed based on graphene oxide (GO)/MnO<sub>2</sub>:h-MoO<sub>3</sub> nanocomposite for sensitive and selective voltammetric detection of acetaminophen (ACP). The composite electrode materials were characterized using X-Ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) techniques. In the optimum conditions, the oxidation peak current (<i>I<sub>pa</sub></i>) of ACP was increased linearly with its concentration over two linear ranges from 0.06 to 10.0 μmol L<sup>−1</sup> and 20.0 to 80.0 μmol L<sup>−1</sup> with a detection limit of 0.0133 μmol L<sup>−1</sup>. Due to its higher selectivity and long term stability, the composite electrode was applied to the detection of ACP in pharmaceutical formulations.</p>\",\"PeriodicalId\":162,\"journal\":{\"name\":\"Electroanalysis\",\"volume\":\"36 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elan.202400042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electroanalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elan.202400042\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202400042","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
基于氧化石墨烯(GO)/氧化锰(MnO <sub>2</sub>:h-MoO <sub>3</sub>纳米复合材料开发了一种新型复合电极,用于对乙酰氨基酚(ACP)进行灵敏的选择性伏安检测。利用 X 射线光电子能谱 (XPS)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、电化学阻抗能谱 (EIS) 和循环伏安 (CV) 技术对复合电极材料进行了表征。在最佳条件下,ACP 的氧化峰电流(<i>I<sub>pa</sub></i>)在 0.06至10.0 µmol L <sup>-1</sup>和20.0至80.0 µmol L <sup>-1</sup>,检测限为0.0133 μmol L <sup>-1</sup>。由于该复合电极具有更高的选择性和长期稳定性,因此被应用于药物制剂中 ACP 的检测。
A novel composite electrode based on graphene oxide/MnO2:h-MoO3 particles for square wave voltammetric determination of acetaminophen
A novel composite electrode was developed based on graphene oxide (GO)/MnO2:h-MoO3 nanocomposite for sensitive and selective voltammetric detection of acetaminophen (ACP). The composite electrode materials were characterized using X-Ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) techniques. In the optimum conditions, the oxidation peak current (Ipa) of ACP was increased linearly with its concentration over two linear ranges from 0.06 to 10.0 μmol L−1 and 20.0 to 80.0 μmol L−1 with a detection limit of 0.0133 μmol L−1. Due to its higher selectivity and long term stability, the composite electrode was applied to the detection of ACP in pharmaceutical formulations.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.