模拟恒压下向外传播的湍流预混合火焰的方法

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2024-04-13 DOI:10.1007/s10494-024-00544-4
Seung Hyun Kim
{"title":"模拟恒压下向外传播的湍流预混合火焰的方法","authors":"Seung Hyun Kim","doi":"10.1007/s10494-024-00544-4","DOIUrl":null,"url":null,"abstract":"<div><p>An outwardly propagating premixed flame in homogeneous isotropic turbulence at constant pressure is considered one of canonical configurations to study turbulent premixed flames. In this paper, a surface forcing method to prevent the undesirable influence of the boundary-condition-induced backflow on the flame evolution, while maintaining the constant pressure, in the simulation of the outwardly propagating flame is presented. The method is validated for laminar and turbulent flames. The results show that the present method well preserves the characteristics of turbulence and of an outwardly propagating flame, without the undesirable influence of the boundary condition, by feeding the homogeneous turbulence relative to the velocity field induced by the volume expansion due to heat release to the domain in which the flame develops.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 2","pages":"465 - 480"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00544-4.pdf","citationCount":"0","resultStr":"{\"title\":\"A Method to Simulate an Outwardly Propagating Turbulent Premixed Flame at Constant Pressure\",\"authors\":\"Seung Hyun Kim\",\"doi\":\"10.1007/s10494-024-00544-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An outwardly propagating premixed flame in homogeneous isotropic turbulence at constant pressure is considered one of canonical configurations to study turbulent premixed flames. In this paper, a surface forcing method to prevent the undesirable influence of the boundary-condition-induced backflow on the flame evolution, while maintaining the constant pressure, in the simulation of the outwardly propagating flame is presented. The method is validated for laminar and turbulent flames. The results show that the present method well preserves the characteristics of turbulence and of an outwardly propagating flame, without the undesirable influence of the boundary condition, by feeding the homogeneous turbulence relative to the velocity field induced by the volume expansion due to heat release to the domain in which the flame develops.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"113 2\",\"pages\":\"465 - 480\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-024-00544-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00544-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00544-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在恒定压力下的均质各向同性湍流中向外传播的预混火焰被认为是研究湍流预混火焰的典型构型之一。本文提出了一种表面强制方法,用于在模拟向外传播火焰时防止边界条件引起的逆流对火焰演化的不良影响,同时保持压力恒定。该方法对层流火焰和湍流火焰进行了验证。结果表明,本方法通过将热量释放导致的体积膨胀引起的速度场相对于均匀湍流馈入火焰发展的域中,很好地保留了湍流和向外传播火焰的特征,而不会受到边界条件的不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method to Simulate an Outwardly Propagating Turbulent Premixed Flame at Constant Pressure

An outwardly propagating premixed flame in homogeneous isotropic turbulence at constant pressure is considered one of canonical configurations to study turbulent premixed flames. In this paper, a surface forcing method to prevent the undesirable influence of the boundary-condition-induced backflow on the flame evolution, while maintaining the constant pressure, in the simulation of the outwardly propagating flame is presented. The method is validated for laminar and turbulent flames. The results show that the present method well preserves the characteristics of turbulence and of an outwardly propagating flame, without the undesirable influence of the boundary condition, by feeding the homogeneous turbulence relative to the velocity field induced by the volume expansion due to heat release to the domain in which the flame develops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Numerical Simulation of Hydrodynamic Noises during Bubble Rising Process High Speed Particle Image Velocimetry in a Large Engine Prechamber The Aerodynamic Breakup and Interactions of Evaporating Water Droplets with a Propagating Shock Wave Passive Control of Shock-Wave/Turbulent Boundary-Layer Interaction Using Spanwise Heterogeneous Roughness Installation Effects on Jet Aeroacoustics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1