DisRot:通过知识提炼和自我监督学习提高少量学习的泛化能力

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Vision and Applications Pub Date : 2024-04-09 DOI:10.1007/s00138-024-01529-z
Chenyu Ma, Jinfang Jia, Jianqiang Huang, Li Wu, Xiaoying Wang
{"title":"DisRot:通过知识提炼和自我监督学习提高少量学习的泛化能力","authors":"Chenyu Ma, Jinfang Jia, Jianqiang Huang, Li Wu, Xiaoying Wang","doi":"10.1007/s00138-024-01529-z","DOIUrl":null,"url":null,"abstract":"<p>Few-shot learning (FSL) aims to adapt quickly to new categories with limited samples. Despite significant progress in utilizing meta-learning for solving FSL tasks, challenges such as overfitting and poor generalization still exist. Building upon the demonstrated significance of powerful feature representation, this work proposes disRot, a novel two-strategy training mechanism, which combines knowledge distillation and rotation prediction task for the pre-training phase of transfer learning. Knowledge distillation enables shallow networks to learn relational knowledge contained in deep networks, while the self-supervised rotation prediction task provides class-irrelevant and transferable knowledge for the supervised task. Simultaneous optimization for these two tasks allows the model learn generalizable and transferable feature embedding. Extensive experiments on the miniImageNet and FC100 datasets demonstrate that disRot can effectively improve the generalization ability of the model and is comparable to the leading FSL methods.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"37 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DisRot: boosting the generalization capability of few-shot learning via knowledge distillation and self-supervised learning\",\"authors\":\"Chenyu Ma, Jinfang Jia, Jianqiang Huang, Li Wu, Xiaoying Wang\",\"doi\":\"10.1007/s00138-024-01529-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Few-shot learning (FSL) aims to adapt quickly to new categories with limited samples. Despite significant progress in utilizing meta-learning for solving FSL tasks, challenges such as overfitting and poor generalization still exist. Building upon the demonstrated significance of powerful feature representation, this work proposes disRot, a novel two-strategy training mechanism, which combines knowledge distillation and rotation prediction task for the pre-training phase of transfer learning. Knowledge distillation enables shallow networks to learn relational knowledge contained in deep networks, while the self-supervised rotation prediction task provides class-irrelevant and transferable knowledge for the supervised task. Simultaneous optimization for these two tasks allows the model learn generalizable and transferable feature embedding. Extensive experiments on the miniImageNet and FC100 datasets demonstrate that disRot can effectively improve the generalization ability of the model and is comparable to the leading FSL methods.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01529-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01529-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

少量学习(FSL)旨在利用有限的样本快速适应新的类别。尽管在利用元学习解决 FSL 任务方面取得了重大进展,但过度拟合和泛化能力差等挑战依然存在。基于已证明的强大特征表示的重要性,本研究提出了一种新颖的双策略训练机制--disRot,它将知识蒸馏和旋转预测任务相结合,用于迁移学习的预训练阶段。知识蒸馏使浅层网络能够学习深层网络中包含的关系知识,而自监督旋转预测任务则为监督任务提供与类无关的可迁移知识。针对这两项任务的同步优化使模型能够学习可通用和可转移的特征嵌入。在 miniImageNet 和 FC100 数据集上进行的大量实验证明,disRot 可以有效提高模型的泛化能力,并可与领先的 FSL 方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DisRot: boosting the generalization capability of few-shot learning via knowledge distillation and self-supervised learning

Few-shot learning (FSL) aims to adapt quickly to new categories with limited samples. Despite significant progress in utilizing meta-learning for solving FSL tasks, challenges such as overfitting and poor generalization still exist. Building upon the demonstrated significance of powerful feature representation, this work proposes disRot, a novel two-strategy training mechanism, which combines knowledge distillation and rotation prediction task for the pre-training phase of transfer learning. Knowledge distillation enables shallow networks to learn relational knowledge contained in deep networks, while the self-supervised rotation prediction task provides class-irrelevant and transferable knowledge for the supervised task. Simultaneous optimization for these two tasks allows the model learn generalizable and transferable feature embedding. Extensive experiments on the miniImageNet and FC100 datasets demonstrate that disRot can effectively improve the generalization ability of the model and is comparable to the leading FSL methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
期刊最新文献
A novel key point based ROI segmentation and image captioning using guidance information Specular Surface Detection with Deep Static Specular Flow and Highlight Removing cloud shadows from ground-based solar imagery Underwater image object detection based on multi-scale feature fusion Object Recognition Consistency in Regression for Active Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1