高强度交通结构中空中机器人的分散式解冲突

IF 4.2 2区 计算机科学 Q2 ROBOTICS Journal of Field Robotics Pub Date : 2024-04-11 DOI:10.1002/rob.22340
Verdon Crann, Peyman Amiri, Samuel Knox, William Crowther
{"title":"高强度交通结构中空中机器人的分散式解冲突","authors":"Verdon Crann,&nbsp;Peyman Amiri,&nbsp;Samuel Knox,&nbsp;William Crowther","doi":"10.1002/rob.22340","DOIUrl":null,"url":null,"abstract":"<p>Projections for future air mobility envisage intensely utilized airspace that does not simply scale up from existing systems with centralized air traffic control. This paper considers the implementation and test of a software and hardware framework for decentralized control of aerial vehicles within intensely used airspace. Up to 10 rotary wing vehicles of maximum all up mass of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1</mn>\n \n <mo> </mo>\n \n <mi>kg</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0001\" wiley:location=\"equation/rob22340-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\unicode{x0200A}&lt;/mo&gt;&lt;mi&gt;kg&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> are flown in an outdoor volume with length scale of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>100</mn>\n \n <mo> </mo>\n \n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0002\" wiley:location=\"equation/rob22340-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;100&lt;/mn&gt;&lt;mo&gt;\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> with GPS and WiFi connectivity. Flight control is implemented using a Pixhawk 4 flight controller running the PX4 firmware with guidance algorithms run on a separate onboard companion computer. Deconfliction is implemented using a simple elastic repulsion model with a guidance update rate of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>10</mn>\n \n <mo> </mo>\n \n <mi>Hz</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0003\" wiley:location=\"equation/rob22340-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mo&gt;\\unicode{x0200A}&lt;/mo&gt;&lt;mi&gt;Hz&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>. Traffic structures are constructed from a path of directed waypoints and associated cross sectional geometry. Junctions are implemented when two paths converge into one or when one path diverges into two. Agents engage with structures through execution of flow, merge and swirl velocity rules. Calibration experiments showed that the worst case latency in agents sharing position information was of the order of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.5</mn>\n \n <mo> </mo>\n \n <mi>s</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0004\" wiley:location=\"equation/rob22340-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0.5&lt;/mn&gt;&lt;mo&gt;\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> made up from delays due to finite guidance update rate, WiFi processing and centralized message processing. A choice of vehicle cruise speed of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mo> </mo>\n \n <mi>m</mi>\n \n <mo>∕</mo>\n \n <mi>s</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0005\" wiley:location=\"equation/rob22340-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;m&lt;/mi&gt;&lt;mo&gt;\\unicode{x02215}&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> and conflict radius of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>2.5</mn>\n \n <mo> </mo>\n \n <mi>m</mi>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0006\" wiley:location=\"equation/rob22340-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2.5&lt;/mn&gt;&lt;mo&gt;\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\"normal\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math> provided an acceptable compromise between experiment time efficiency (speed) and spatial efficiency (resolution) within the test volume. Results from recirculating junction experiments show that peak deconfliction activity occurs at the junction node, however biased distribution of agents within a corridor means the peak intensity is pushed ahead of the node. Use of meshed helical junction structures significantly reduces the intensity of conflict at the expense of reduced junction time efficiency.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 5","pages":"1541-1557"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22340","citationCount":"0","resultStr":"{\"title\":\"Decentralized deconfliction of aerial robots in high intensity traffic structures\",\"authors\":\"Verdon Crann,&nbsp;Peyman Amiri,&nbsp;Samuel Knox,&nbsp;William Crowther\",\"doi\":\"10.1002/rob.22340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Projections for future air mobility envisage intensely utilized airspace that does not simply scale up from existing systems with centralized air traffic control. This paper considers the implementation and test of a software and hardware framework for decentralized control of aerial vehicles within intensely used airspace. Up to 10 rotary wing vehicles of maximum all up mass of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo> </mo>\\n \\n <mi>kg</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0001\\\" wiley:location=\\\"equation/rob22340-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0200A}&lt;/mo&gt;&lt;mi&gt;kg&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> are flown in an outdoor volume with length scale of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>100</mn>\\n \\n <mo> </mo>\\n \\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0002\\\" wiley:location=\\\"equation/rob22340-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;100&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> with GPS and WiFi connectivity. Flight control is implemented using a Pixhawk 4 flight controller running the PX4 firmware with guidance algorithms run on a separate onboard companion computer. Deconfliction is implemented using a simple elastic repulsion model with a guidance update rate of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>10</mn>\\n \\n <mo> </mo>\\n \\n <mi>Hz</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0003\\\" wiley:location=\\\"equation/rob22340-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;10&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0200A}&lt;/mo&gt;&lt;mi&gt;Hz&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>. Traffic structures are constructed from a path of directed waypoints and associated cross sectional geometry. Junctions are implemented when two paths converge into one or when one path diverges into two. Agents engage with structures through execution of flow, merge and swirl velocity rules. Calibration experiments showed that the worst case latency in agents sharing position information was of the order of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0.5</mn>\\n \\n <mo> </mo>\\n \\n <mi>s</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0004\\\" wiley:location=\\\"equation/rob22340-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;0.5&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> made up from delays due to finite guidance update rate, WiFi processing and centralized message processing. A choice of vehicle cruise speed of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2</mn>\\n \\n <mo> </mo>\\n \\n <mi>m</mi>\\n \\n <mo>∕</mo>\\n \\n <mi>s</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0005\\\" wiley:location=\\\"equation/rob22340-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;m&lt;/mi&gt;&lt;mo&gt;\\\\unicode{x02215}&lt;/mo&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> and conflict radius of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>2.5</mn>\\n \\n <mo> </mo>\\n \\n <mi>m</mi>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22340:rob22340-math-0006\\\" wiley:location=\\\"equation/rob22340-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mn&gt;2.5&lt;/mn&gt;&lt;mo&gt;\\\\unicode{x0200A}&lt;/mo&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math> provided an acceptable compromise between experiment time efficiency (speed) and spatial efficiency (resolution) within the test volume. Results from recirculating junction experiments show that peak deconfliction activity occurs at the junction node, however biased distribution of agents within a corridor means the peak intensity is pushed ahead of the node. Use of meshed helical junction structures significantly reduces the intensity of conflict at the expense of reduced junction time efficiency.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 5\",\"pages\":\"1541-1557\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22340\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22340\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

对未来空中交通的预测表明,使用密集的空域并不能简单地从现有的集中式空中交通管制系统扩展开来。本文探讨了在密集使用的空域内对飞行器进行分散控制的软件和硬件框架的实施和测试。多达 10 架最大质量为 的旋转翼飞行器在长度为 的室外空间中飞行,并与全球定位系统和 WiFi 连接。飞行控制由运行 PX4 固件的 Pixhawk 4 飞行控制器实现,制导算法在单独的机载配套计算机上运行。解冲突是通过一个简单的弹性斥力模型实现的,制导更新率为 0.5%。 交通结构由定向航点路径和相关截面几何图形构建而成。当两条路径汇合成一条或一条路径分叉成两条时,就会出现交汇点。代理通过执行流动、合并和漩涡速度规则与结构相接触。校准实验表明,在最坏的情况下,代理共享位置信息的延迟由有限的制导更新率、WiFi 处理和集中式信息处理造成的延迟组成。选择车辆巡航速度为和冲突半径为,可在测试区域内实验时间效率(速度)和空间效率(分辨率)之间实现可接受的折中。循环交界处的实验结果表明,消除冲突活动的峰值出现在交界处的节点上,但走廊内特工分布的偏差意味着峰值强度被推到了节点之前。使用网状螺旋交界结构可显著降低冲突强度,但交界时间效率却有所降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized deconfliction of aerial robots in high intensity traffic structures

Projections for future air mobility envisage intensely utilized airspace that does not simply scale up from existing systems with centralized air traffic control. This paper considers the implementation and test of a software and hardware framework for decentralized control of aerial vehicles within intensely used airspace. Up to 10 rotary wing vehicles of maximum all up mass of 1 kg <math altimg="urn:x-wiley:15564959:media:rob22340:rob22340-math-0001" wiley:location="equation/rob22340-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>1</mn><mo>\unicode{x0200A}</mo><mi>kg</mi></mrow></mrow></math> are flown in an outdoor volume with length scale of 100 m <math altimg="urn:x-wiley:15564959:media:rob22340:rob22340-math-0002" wiley:location="equation/rob22340-math-0002.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>100</mn><mo>\unicode{x0200A}</mo><mi mathvariant="normal">m</mi></mrow></mrow></math> with GPS and WiFi connectivity. Flight control is implemented using a Pixhawk 4 flight controller running the PX4 firmware with guidance algorithms run on a separate onboard companion computer. Deconfliction is implemented using a simple elastic repulsion model with a guidance update rate of 10 Hz <math altimg="urn:x-wiley:15564959:media:rob22340:rob22340-math-0003" wiley:location="equation/rob22340-math-0003.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>10</mn><mo>\unicode{x0200A}</mo><mi>Hz</mi></mrow></mrow></math> . Traffic structures are constructed from a path of directed waypoints and associated cross sectional geometry. Junctions are implemented when two paths converge into one or when one path diverges into two. Agents engage with structures through execution of flow, merge and swirl velocity rules. Calibration experiments showed that the worst case latency in agents sharing position information was of the order of 0.5 s <math altimg="urn:x-wiley:15564959:media:rob22340:rob22340-math-0004" wiley:location="equation/rob22340-math-0004.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>0.5</mn><mo>\unicode{x0200A}</mo><mi mathvariant="normal">s</mi></mrow></mrow></math> made up from delays due to finite guidance update rate, WiFi processing and centralized message processing. A choice of vehicle cruise speed of 2 m s <math altimg="urn:x-wiley:15564959:media:rob22340:rob22340-math-0005" wiley:location="equation/rob22340-math-0005.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>2</mn><mo>\unicode{x0200A}</mo><mi mathvariant="normal">m</mi><mo>\unicode{x02215}</mo><mi mathvariant="normal">s</mi></mrow></mrow></math> and conflict radius of 2.5 m <math altimg="urn:x-wiley:15564959:media:rob22340:rob22340-math-0006" wiley:location="equation/rob22340-math-0006.png" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mn>2.5</mn><mo>\unicode{x0200A}</mo><mi mathvariant="normal">m</mi></mrow></mrow></math> provided an acceptable compromise between experiment time efficiency (speed) and spatial efficiency (resolution) within the test volume. Results from recirculating junction experiments show that peak deconfliction activity occurs at the junction node, however biased distribution of agents within a corridor means the peak intensity is pushed ahead of the node. Use of meshed helical junction structures significantly reduces the intensity of conflict at the expense of reduced junction time efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
期刊最新文献
Issue Information Cover Image, Volume 41, Number 8, December 2024 Issue Information ForzaETH Race Stack—Scaled Autonomous Head‐to‐Head Racing on Fully Commercial Off‐the‐Shelf Hardware Research on Satellite Navigation Control of Six‐Crawler Machinery Based on Fuzzy PID Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1