Metaverse 中的代币经济学:了解新兴加密代币的领先滞后效应

IF 6.9 1区 经济学 Q1 BUSINESS, FINANCE Financial Innovation Pub Date : 2024-04-15 DOI:10.1186/s40854-023-00594-z
Chong Guan, Wenting Liu, Yinghui Yu, Ding Ding
{"title":"Metaverse 中的代币经济学:了解新兴加密代币的领先滞后效应","authors":"Chong Guan, Wenting Liu, Yinghui Yu, Ding Ding","doi":"10.1186/s40854-023-00594-z","DOIUrl":null,"url":null,"abstract":"The convergence of blockchain and immersive technologies has resulted in the popularity of Metaverse platforms and their cryptocurrencies, known as Metaverse tokens. There has been little research into tokenomics in these emerging tokens. Building upon the information dissemination theory, this research examines the role of trading volume in the returns of these tokens. An empirical study was conducted using the trading volumes and returns of 197 Metaverse tokens over 12 months to derive the latent grouping structure with spectral clustering and to determine the relationships between daily returns of different token clusters through augmented vector autoregression. The results show that trading volume is a strong predictor of lead–lag patterns, which supports the speed of adjustment hypothesis. This is the first large-scale study that documented the lead–lag effect among Metaverse tokens. Unlike previous studies that focus on market capitalization, our findings suggest that trade volume contains vital information concerning cross-correlation patterns.","PeriodicalId":37175,"journal":{"name":"Financial Innovation","volume":"95 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tokenomics in the Metaverse: understanding the lead–lag effect among emerging crypto tokens\",\"authors\":\"Chong Guan, Wenting Liu, Yinghui Yu, Ding Ding\",\"doi\":\"10.1186/s40854-023-00594-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convergence of blockchain and immersive technologies has resulted in the popularity of Metaverse platforms and their cryptocurrencies, known as Metaverse tokens. There has been little research into tokenomics in these emerging tokens. Building upon the information dissemination theory, this research examines the role of trading volume in the returns of these tokens. An empirical study was conducted using the trading volumes and returns of 197 Metaverse tokens over 12 months to derive the latent grouping structure with spectral clustering and to determine the relationships between daily returns of different token clusters through augmented vector autoregression. The results show that trading volume is a strong predictor of lead–lag patterns, which supports the speed of adjustment hypothesis. This is the first large-scale study that documented the lead–lag effect among Metaverse tokens. Unlike previous studies that focus on market capitalization, our findings suggest that trade volume contains vital information concerning cross-correlation patterns.\",\"PeriodicalId\":37175,\"journal\":{\"name\":\"Financial Innovation\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Innovation\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1186/s40854-023-00594-z\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Innovation","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1186/s40854-023-00594-z","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

区块链和沉浸式技术的融合导致了 Metaverse 平台及其加密货币(即 Metaverse 代币)的流行。对这些新兴代币的代币经济学研究很少。本研究以信息传播理论为基础,探讨了交易量在这些代币收益中的作用。我们利用 197 种 Metaverse 代币在 12 个月内的交易量和回报率进行了实证研究,通过频谱聚类推导出潜在的分组结构,并通过增强向量自回归确定不同代币群组每日回报率之间的关系。结果表明,交易量是领先-滞后模式的有力预测因素,这支持了调整速度假说。这是首次记录 Metaverse 代币领先滞后效应的大规模研究。与以往侧重于市值的研究不同,我们的研究结果表明,交易量包含有关交叉相关模式的重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tokenomics in the Metaverse: understanding the lead–lag effect among emerging crypto tokens
The convergence of blockchain and immersive technologies has resulted in the popularity of Metaverse platforms and their cryptocurrencies, known as Metaverse tokens. There has been little research into tokenomics in these emerging tokens. Building upon the information dissemination theory, this research examines the role of trading volume in the returns of these tokens. An empirical study was conducted using the trading volumes and returns of 197 Metaverse tokens over 12 months to derive the latent grouping structure with spectral clustering and to determine the relationships between daily returns of different token clusters through augmented vector autoregression. The results show that trading volume is a strong predictor of lead–lag patterns, which supports the speed of adjustment hypothesis. This is the first large-scale study that documented the lead–lag effect among Metaverse tokens. Unlike previous studies that focus on market capitalization, our findings suggest that trade volume contains vital information concerning cross-correlation patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Financial Innovation
Financial Innovation Economics, Econometrics and Finance-Finance
CiteScore
11.40
自引率
11.90%
发文量
95
审稿时长
5 weeks
期刊介绍: Financial Innovation (FIN), a Springer OA journal sponsored by Southwestern University of Finance and Economics, serves as a global academic platform for sharing research findings in all aspects of financial innovation during the electronic business era. It facilitates interactions among researchers, policymakers, and practitioners, focusing on new financial instruments, technologies, markets, and institutions. Emphasizing emerging financial products enabled by disruptive technologies, FIN publishes high-quality academic and practical papers. The journal is peer-reviewed, indexed in SSCI, Scopus, Google Scholar, CNKI, CQVIP, and more.
期刊最新文献
Machine learning in business and finance: a literature review and research opportunities Predictive crypto-asset automated market maker architecture for decentralized finance using deep reinforcement learning Cryptocurrencies under climate shocks: a dynamic network analysis of extreme risk spillovers Exploring the coherency and predictability between the stocks of artificial intelligence and energy corporations From CFOs to crypto: exploratory study unraveling factors in corporate adoption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1