Stephanie Zergiebel, Nico Ueberschaar, Jonathan Plentz, Andreas Seeling
{"title":"HPLC-UV 监测 LE404 的光稳定性测试以及通过 NMR 和 LC-HRMS 鉴定降解产物","authors":"Stephanie Zergiebel, Nico Ueberschaar, Jonathan Plentz, Andreas Seeling","doi":"10.1007/s10337-024-04323-1","DOIUrl":null,"url":null,"abstract":"<div><p>Dibenzoazecines are a new class of potential neuroleptics with a high potential for the treatment of schizophrenia. Initial stress tests indicated that the lead compound, LE404, decomposes when exposed to oxygen and sunlight. In this follow-up study, the influence of oxidative stress and photosensitivity was investigated in accordance with the ICH guidelines. These studies are of great importance for new APIs, as phototoxic and photoallergic reactions pose a significant risk to patients, especially with long-term medication, as it is not possible to completely avoid exposure to sunlight. Furthermore, the identification and prediction of the chemical lability of LE404 can be used to determine suitable storage conditions to prevent compound degradation. The effects of exposure of LE404 to a light source similar in spectrum and intensity to natural sunlight were investigated according to ICH-Q1B. Furthermore, the influence of oxidizing agents was investigated under exclusion of light. Two degradation products were identified. The extent and rate of degradation were continuously monitored using RP-HPLC–UV. Chromatographic separations were performed with a phenomenex™ Gemini 5 µm C18 (250 × 4.60 mm) column and acetonitrile/KH<sub>2</sub>PO<sub>4</sub> buffer (4 mmol L<sup>−1</sup>, pH 2.5) as mobile phase at 220 nm. The photodegradation product was isolated using semi-preparative RP-HPLC. The oxidation product was obtained by quantitative conversion of LE404 in hydrogen peroxide and subsequent purification by preparative TLC. The structures of both degradation products were elucidated using HR-MS/MS, 1D- and 2D-NMR as well as FT-IR spectroscopy. The characterization of the degradation products serves as the basis for subsequent investigations into their toxicity.</p></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"87 5","pages":"339 - 349"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HPLC–UV Monitored Photostability-Test of LE404 and Identification of the Degradation Products via NMR and LC–HRMS\",\"authors\":\"Stephanie Zergiebel, Nico Ueberschaar, Jonathan Plentz, Andreas Seeling\",\"doi\":\"10.1007/s10337-024-04323-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dibenzoazecines are a new class of potential neuroleptics with a high potential for the treatment of schizophrenia. Initial stress tests indicated that the lead compound, LE404, decomposes when exposed to oxygen and sunlight. In this follow-up study, the influence of oxidative stress and photosensitivity was investigated in accordance with the ICH guidelines. These studies are of great importance for new APIs, as phototoxic and photoallergic reactions pose a significant risk to patients, especially with long-term medication, as it is not possible to completely avoid exposure to sunlight. Furthermore, the identification and prediction of the chemical lability of LE404 can be used to determine suitable storage conditions to prevent compound degradation. The effects of exposure of LE404 to a light source similar in spectrum and intensity to natural sunlight were investigated according to ICH-Q1B. Furthermore, the influence of oxidizing agents was investigated under exclusion of light. Two degradation products were identified. The extent and rate of degradation were continuously monitored using RP-HPLC–UV. Chromatographic separations were performed with a phenomenex™ Gemini 5 µm C18 (250 × 4.60 mm) column and acetonitrile/KH<sub>2</sub>PO<sub>4</sub> buffer (4 mmol L<sup>−1</sup>, pH 2.5) as mobile phase at 220 nm. The photodegradation product was isolated using semi-preparative RP-HPLC. The oxidation product was obtained by quantitative conversion of LE404 in hydrogen peroxide and subsequent purification by preparative TLC. The structures of both degradation products were elucidated using HR-MS/MS, 1D- and 2D-NMR as well as FT-IR spectroscopy. The characterization of the degradation products serves as the basis for subsequent investigations into their toxicity.</p></div>\",\"PeriodicalId\":518,\"journal\":{\"name\":\"Chromatographia\",\"volume\":\"87 5\",\"pages\":\"339 - 349\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chromatographia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10337-024-04323-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-024-04323-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
HPLC–UV Monitored Photostability-Test of LE404 and Identification of the Degradation Products via NMR and LC–HRMS
Dibenzoazecines are a new class of potential neuroleptics with a high potential for the treatment of schizophrenia. Initial stress tests indicated that the lead compound, LE404, decomposes when exposed to oxygen and sunlight. In this follow-up study, the influence of oxidative stress and photosensitivity was investigated in accordance with the ICH guidelines. These studies are of great importance for new APIs, as phototoxic and photoallergic reactions pose a significant risk to patients, especially with long-term medication, as it is not possible to completely avoid exposure to sunlight. Furthermore, the identification and prediction of the chemical lability of LE404 can be used to determine suitable storage conditions to prevent compound degradation. The effects of exposure of LE404 to a light source similar in spectrum and intensity to natural sunlight were investigated according to ICH-Q1B. Furthermore, the influence of oxidizing agents was investigated under exclusion of light. Two degradation products were identified. The extent and rate of degradation were continuously monitored using RP-HPLC–UV. Chromatographic separations were performed with a phenomenex™ Gemini 5 µm C18 (250 × 4.60 mm) column and acetonitrile/KH2PO4 buffer (4 mmol L−1, pH 2.5) as mobile phase at 220 nm. The photodegradation product was isolated using semi-preparative RP-HPLC. The oxidation product was obtained by quantitative conversion of LE404 in hydrogen peroxide and subsequent purification by preparative TLC. The structures of both degradation products were elucidated using HR-MS/MS, 1D- and 2D-NMR as well as FT-IR spectroscopy. The characterization of the degradation products serves as the basis for subsequent investigations into their toxicity.
期刊介绍:
Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.