{"title":"基于遗传算法的环空充气双梯度钻井多目标优化参数设计","authors":"Qian Li, Xiaolin Zhang, Hu Yin","doi":"10.1007/s13202-024-01785-9","DOIUrl":null,"url":null,"abstract":"<p>The optimization of drilling parameters is crucial for resolving the drilling problems in low-pressure and leaky formations using the annulus aerated dual gradient drilling technology. However, the previous studies have mostly focused on engineering applications and wellbore fluid flow models, with less emphasis on parameter optimization. This paper combines the wellbore multiphase flow model with genetic algorithms for the first time, proposing a key parameter optimization method for annulus aerated dual gradient drilling based on genetic algorithms. The study investigates the impact of selection operators on the performance of genetic algorithms and compares genetic algorithms with PSO algorithm and SAA. The results indicate that the convergence and stability of genetic algorithms can be improved by enhancing the selection operators. Compared to the gas–liquid ratio parameter optimization method, the IRSGA optimization method reduces the cost coefficient by 36.46%. Through comparative analysis of different optimization methods, the IRSGA demonstrates over 95% accuracy in large-scale computations. The research findings contribute to the optimization of parameters design under low-cost conditions and are of significant importance for promoting the use of this technology to address the serious issue of lost circulation in drilling technology.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"52 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of parameters design based on genetic algorithm in annulus aerated dual gradient drilling\",\"authors\":\"Qian Li, Xiaolin Zhang, Hu Yin\",\"doi\":\"10.1007/s13202-024-01785-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The optimization of drilling parameters is crucial for resolving the drilling problems in low-pressure and leaky formations using the annulus aerated dual gradient drilling technology. However, the previous studies have mostly focused on engineering applications and wellbore fluid flow models, with less emphasis on parameter optimization. This paper combines the wellbore multiphase flow model with genetic algorithms for the first time, proposing a key parameter optimization method for annulus aerated dual gradient drilling based on genetic algorithms. The study investigates the impact of selection operators on the performance of genetic algorithms and compares genetic algorithms with PSO algorithm and SAA. The results indicate that the convergence and stability of genetic algorithms can be improved by enhancing the selection operators. Compared to the gas–liquid ratio parameter optimization method, the IRSGA optimization method reduces the cost coefficient by 36.46%. Through comparative analysis of different optimization methods, the IRSGA demonstrates over 95% accuracy in large-scale computations. The research findings contribute to the optimization of parameters design under low-cost conditions and are of significant importance for promoting the use of this technology to address the serious issue of lost circulation in drilling technology.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01785-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01785-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
使用环空充气双梯度钻井技术解决低压和漏失地层的钻井问题,钻井参数的优化至关重要。然而,以往的研究大多集中在工程应用和井筒流体流动模型方面,较少关注参数优化。本文首次将井筒多相流模型与遗传算法相结合,提出了基于遗传算法的环空双梯度钻井关键参数优化方法。研究探讨了选择算子对遗传算法性能的影响,并将遗传算法与 PSO 算法和 SAA 进行了比较。结果表明,通过增强选择算子可以提高遗传算法的收敛性和稳定性。与气液比参数优化方法相比,IRSGA 优化方法的成本系数降低了 36.46%。通过对不同优化方法的对比分析,IRSGA 在大规模计算中的准确率超过 95%。研究成果有助于在低成本条件下优化参数设计,对推广使用该技术解决钻井技术中严重的循环损失问题具有重要意义。
Multi-objective optimization of parameters design based on genetic algorithm in annulus aerated dual gradient drilling
The optimization of drilling parameters is crucial for resolving the drilling problems in low-pressure and leaky formations using the annulus aerated dual gradient drilling technology. However, the previous studies have mostly focused on engineering applications and wellbore fluid flow models, with less emphasis on parameter optimization. This paper combines the wellbore multiphase flow model with genetic algorithms for the first time, proposing a key parameter optimization method for annulus aerated dual gradient drilling based on genetic algorithms. The study investigates the impact of selection operators on the performance of genetic algorithms and compares genetic algorithms with PSO algorithm and SAA. The results indicate that the convergence and stability of genetic algorithms can be improved by enhancing the selection operators. Compared to the gas–liquid ratio parameter optimization method, the IRSGA optimization method reduces the cost coefficient by 36.46%. Through comparative analysis of different optimization methods, the IRSGA demonstrates over 95% accuracy in large-scale computations. The research findings contribute to the optimization of parameters design under low-cost conditions and are of significant importance for promoting the use of this technology to address the serious issue of lost circulation in drilling technology.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies