{"title":"芸苔素甾类化合物调节作物农艺性状的功能和机制","authors":"Xu Chen, Xiaotong Hu, Jianjun Jiang, Xuelu Wang","doi":"10.1093/pcp/pcae044","DOIUrl":null,"url":null,"abstract":"Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number, and leaf erectness and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functions and Mechanisms of Brassinosteroids in Regulating Crop Agronomic Traits\",\"authors\":\"Xu Chen, Xiaotong Hu, Jianjun Jiang, Xuelu Wang\",\"doi\":\"10.1093/pcp/pcae044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number, and leaf erectness and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.\",\"PeriodicalId\":502140,\"journal\":{\"name\":\"Plant & Cell Physiology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant & Cell Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant & Cell Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pcp/pcae044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functions and Mechanisms of Brassinosteroids in Regulating Crop Agronomic Traits
Brassinosteroids (BRs) perform crucial functions controlling plant growth and developmental processes, encompassing many agronomic traits in crops. Studies of BR-related genes involved in agronomic traits have suggested that BRs could serve as a potential target for crop breeding. Given the pleiotropic effect of BRs, a systematic understanding of their functions and molecular mechanisms is conducive for application in crop improvement. Here, we summarize the functions and underlying mechanisms by which BRs regulate the several major crop agronomic traits, including plant architecture, grain size, as well as the specific trait of symbiotic nitrogen fixation in legume crops. For plant architecture, we discuss the roles of BRs in plant height, branching number, and leaf erectness and propose how progress in these fields may contribute to designing crops with optimal agronomic traits and improved grain yield by accurately modifying BR levels and signaling pathways.