{"title":"多项式受限展开","authors":"Mark de Rooij, Frank Busing","doi":"10.1007/s00357-024-09465-3","DOIUrl":null,"url":null,"abstract":"<p>For supervised classification we propose to use restricted multidimensional unfolding in a multinomial logistic framework. Where previous research proposed similar models based on squared distances, we propose to use usual (i.e., not squared) Euclidean distances. This change in functional form results in several interpretational advantages of the resulting biplot, a graphical representation of the classification model. First, the conditional probability of any class peaks at the location of the class in the Euclidean space. Second, the interpretation of the biplot is in terms of distances towards the class points, whereas in the squared distance model the interpretation is in terms of the distance towards the decision boundary. Third, the distance between two class points represents an upper bound for the estimated log-odds of choosing one of these classes over the other. For our multinomial restricted unfolding, we develop and test a Majorization Minimization algorithm that monotonically decreases the negative log-likelihood. With two empirical applications we point out the advantages of the distance model and show how to apply multinomial restricted unfolding in practice, including model selection.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multinomial Restricted Unfolding\",\"authors\":\"Mark de Rooij, Frank Busing\",\"doi\":\"10.1007/s00357-024-09465-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For supervised classification we propose to use restricted multidimensional unfolding in a multinomial logistic framework. Where previous research proposed similar models based on squared distances, we propose to use usual (i.e., not squared) Euclidean distances. This change in functional form results in several interpretational advantages of the resulting biplot, a graphical representation of the classification model. First, the conditional probability of any class peaks at the location of the class in the Euclidean space. Second, the interpretation of the biplot is in terms of distances towards the class points, whereas in the squared distance model the interpretation is in terms of the distance towards the decision boundary. Third, the distance between two class points represents an upper bound for the estimated log-odds of choosing one of these classes over the other. For our multinomial restricted unfolding, we develop and test a Majorization Minimization algorithm that monotonically decreases the negative log-likelihood. With two empirical applications we point out the advantages of the distance model and show how to apply multinomial restricted unfolding in practice, including model selection.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09465-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09465-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
For supervised classification we propose to use restricted multidimensional unfolding in a multinomial logistic framework. Where previous research proposed similar models based on squared distances, we propose to use usual (i.e., not squared) Euclidean distances. This change in functional form results in several interpretational advantages of the resulting biplot, a graphical representation of the classification model. First, the conditional probability of any class peaks at the location of the class in the Euclidean space. Second, the interpretation of the biplot is in terms of distances towards the class points, whereas in the squared distance model the interpretation is in terms of the distance towards the decision boundary. Third, the distance between two class points represents an upper bound for the estimated log-odds of choosing one of these classes over the other. For our multinomial restricted unfolding, we develop and test a Majorization Minimization algorithm that monotonically decreases the negative log-likelihood. With two empirical applications we point out the advantages of the distance model and show how to apply multinomial restricted unfolding in practice, including model selection.
期刊介绍:
To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.