固体中惰性气体的纳米级分析

IF 2.5 4区 化学 Q3 CHEMISTRY, ANALYTICAL Journal of Analytical Science and Technology Pub Date : 2024-04-02 DOI:10.1186/s40543-024-00429-1
Ken-ichi Bajo, Hisayoshi Yurimoto
{"title":"固体中惰性气体的纳米级分析","authors":"Ken-ichi Bajo, Hisayoshi Yurimoto","doi":"10.1186/s40543-024-00429-1","DOIUrl":null,"url":null,"abstract":"Noble gases are useful tracers for geochemistry, used to elucidate the origin and evolution of the solar system and planets. Noble gas analyses have been limited to bulk and spot analyses of solids and have yet to be developed for two- and three-dimensional imaging analysis. Recent developments in He isotope imaging using secondary neutral mass spectrometry are reviewed. The images have been fully quantified, and the spatial resolution has reached the nanoscale. The detection limit has been reduced to the level of ~ 10–3 cm3 STP g−1 (~ 1017 cm−3, ~ 1 ppma) for helium at lateral micrometer resolution. With this development, the concentration distribution of He in solids has been visualized as a map for the first time.","PeriodicalId":14967,"journal":{"name":"Journal of Analytical Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale analysis of noble gas in solids\",\"authors\":\"Ken-ichi Bajo, Hisayoshi Yurimoto\",\"doi\":\"10.1186/s40543-024-00429-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noble gases are useful tracers for geochemistry, used to elucidate the origin and evolution of the solar system and planets. Noble gas analyses have been limited to bulk and spot analyses of solids and have yet to be developed for two- and three-dimensional imaging analysis. Recent developments in He isotope imaging using secondary neutral mass spectrometry are reviewed. The images have been fully quantified, and the spatial resolution has reached the nanoscale. The detection limit has been reduced to the level of ~ 10–3 cm3 STP g−1 (~ 1017 cm−3, ~ 1 ppma) for helium at lateral micrometer resolution. With this development, the concentration distribution of He in solids has been visualized as a map for the first time.\",\"PeriodicalId\":14967,\"journal\":{\"name\":\"Journal of Analytical Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40543-024-00429-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40543-024-00429-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

惰性气体是地球化学的有用示踪剂,用于阐明太阳系和行星的起源和演变。惰性气体分析仅限于固体的块状和点状分析,尚未发展到二维和三维成像分析。本文回顾了利用二次中性质谱进行 He 同位素成像的最新进展。图像已完全量化,空间分辨率已达到纳米级。在横向微米分辨率下,氦的检测极限已降至 ~ 10-3 cm3 STP g-1 ( ~ 1017 cm-3, ~ 1 ppma)的水平。随着这项技术的发展,氦在固体中的浓度分布首次以地图的形式呈现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanoscale analysis of noble gas in solids
Noble gases are useful tracers for geochemistry, used to elucidate the origin and evolution of the solar system and planets. Noble gas analyses have been limited to bulk and spot analyses of solids and have yet to be developed for two- and three-dimensional imaging analysis. Recent developments in He isotope imaging using secondary neutral mass spectrometry are reviewed. The images have been fully quantified, and the spatial resolution has reached the nanoscale. The detection limit has been reduced to the level of ~ 10–3 cm3 STP g−1 (~ 1017 cm−3, ~ 1 ppma) for helium at lateral micrometer resolution. With this development, the concentration distribution of He in solids has been visualized as a map for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Analytical Science and Technology
Journal of Analytical Science and Technology Environmental Science-General Environmental Science
CiteScore
4.00
自引率
4.20%
发文量
39
审稿时长
13 weeks
期刊介绍: The Journal of Analytical Science and Technology (JAST) is a fully open access peer-reviewed scientific journal published under the brand SpringerOpen. JAST was launched by Korea Basic Science Institute in 2010. JAST publishes original research and review articles on all aspects of analytical principles, techniques, methods, procedures, and equipment. JAST’s vision is to be an internationally influential and widely read analytical science journal. Our mission is to inform and stimulate researchers to make significant professional achievements in science. We aim to provide scientists, researchers, and students worldwide with unlimited access to the latest advances of the analytical sciences.
期刊最新文献
Inorganic iodine and bromine speciation in Arctic snow at picogram-per-grams levels by IC-ICP-MS Accurate determination of high sulfur content in sulfide samples: an optimized ICP-OES method Spray-assisted drop formation liquid-phase microextraction for the determination of sertraline in environmental water samples with matrix-matching calibration in GC–MS Isotopic distribution of bioavailable Sr, Nd, and Pb in Chungcheongbuk-do Province, Korea Exploring the feasibility of a single-protoplast proteomic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1