{"title":"埋藏溶蚀对超深断层控制碳酸盐岩储层开发的影响:高温高压溶解动力学模拟的启示","authors":"Xiaolin TAN, Lianbo ZENG, Min SHE, Hao LI, Zhe MAO, Yichen SONG, Yingtao YAO, Junpeng WANG, Yuzhen LÜ","doi":"10.1111/1755-6724.15166","DOIUrl":null,"url":null,"abstract":"Burial dissolution is a critical diagenetic process influencing ultra‐deep carbonate reservoir development and preservation. Artificial carbonate samples with different internal structures were prepared, and high‐temperature and high‐pressure dissolution kinetic simulations were conducted. The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure, while tectonic‐fluid activity influences the development pattern of burial dissolution, ultimately determining the direction of its differential modification. Extensive burial dissolution is likely to occur primarily at relatively shallow depths, significantly influencing reservoir formation, preservation, modification, and adjustment. The development of faults facilitates the maintenance of the intensity of burial dissolution. The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults. The larger the scale of the faults, the more conducive it is to the development of burial dissolution. Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability. Burial dissolution controlled by episodic tectonic‐fluid activity is a plausible explanation for forming the Tarim Basin's ultra‐deep fault‐controlled “string‐bead‐like” reservoirs.","PeriodicalId":7095,"journal":{"name":"Acta Geologica Sinica ‐ English Edition","volume":"35 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Burial Dissolution on the Development of Ultra‐deep Fault‐controlled Carbonate Reservoirs: Insights from High‐temperature and High‐pressure Dissolution Kinetic Simulation\",\"authors\":\"Xiaolin TAN, Lianbo ZENG, Min SHE, Hao LI, Zhe MAO, Yichen SONG, Yingtao YAO, Junpeng WANG, Yuzhen LÜ\",\"doi\":\"10.1111/1755-6724.15166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burial dissolution is a critical diagenetic process influencing ultra‐deep carbonate reservoir development and preservation. Artificial carbonate samples with different internal structures were prepared, and high‐temperature and high‐pressure dissolution kinetic simulations were conducted. The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure, while tectonic‐fluid activity influences the development pattern of burial dissolution, ultimately determining the direction of its differential modification. Extensive burial dissolution is likely to occur primarily at relatively shallow depths, significantly influencing reservoir formation, preservation, modification, and adjustment. The development of faults facilitates the maintenance of the intensity of burial dissolution. The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults. The larger the scale of the faults, the more conducive it is to the development of burial dissolution. Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability. Burial dissolution controlled by episodic tectonic‐fluid activity is a plausible explanation for forming the Tarim Basin's ultra‐deep fault‐controlled “string‐bead‐like” reservoirs.\",\"PeriodicalId\":7095,\"journal\":{\"name\":\"Acta Geologica Sinica ‐ English Edition\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geologica Sinica ‐ English Edition\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-6724.15166\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geologica Sinica ‐ English Edition","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/1755-6724.15166","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of Burial Dissolution on the Development of Ultra‐deep Fault‐controlled Carbonate Reservoirs: Insights from High‐temperature and High‐pressure Dissolution Kinetic Simulation
Burial dissolution is a critical diagenetic process influencing ultra‐deep carbonate reservoir development and preservation. Artificial carbonate samples with different internal structures were prepared, and high‐temperature and high‐pressure dissolution kinetic simulations were conducted. The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure, while tectonic‐fluid activity influences the development pattern of burial dissolution, ultimately determining the direction of its differential modification. Extensive burial dissolution is likely to occur primarily at relatively shallow depths, significantly influencing reservoir formation, preservation, modification, and adjustment. The development of faults facilitates the maintenance of the intensity of burial dissolution. The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults. The larger the scale of the faults, the more conducive it is to the development of burial dissolution. Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability. Burial dissolution controlled by episodic tectonic‐fluid activity is a plausible explanation for forming the Tarim Basin's ultra‐deep fault‐controlled “string‐bead‐like” reservoirs.
期刊介绍:
Acta Geologica Sinica mainly reports the latest and most important achievements in the theoretical and basic research in geological sciences, together with new technologies, in China. Papers published involve various aspects of research concerning geosciences and related disciplines, such as stratigraphy, palaeontology, origin and history of the Earth, structural geology, tectonics, mineralogy, petrology, geochemistry, geophysics, geology of mineral deposits, hydrogeology, engineering geology, environmental geology, regional geology and new theories and technologies of geological exploration.