{"title":"纤毛虫病的肾脏病理学","authors":"Thivya Sekar, Neil J. Sebire","doi":"10.1177/10935266241242173","DOIUrl":null,"url":null,"abstract":"Renal ciliopathies are a group of genetic disorders that affect the function of the primary cilium in the kidney, as well as other organs. Since primary cilia are important for regulation of cell signaling pathways, ciliary dysfunction results in a range of clinical manifestations, including renal failure, cyst formation, and hypertension. We summarize the current understanding of the pathophysiological and pathological features of renal ciliopathies in childhood, including autosomal dominant and recessive polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, as well as skeletal dysplasia associated renal ciliopathies. The genetic basis of these disorders is now well-established in many cases, with mutations in a large number of cilia-related genes such as PKD1, PKD2, BBS, MKS, and NPHP being responsible for the majority of cases. Renal ciliopathies are broadly characterized by development of interstitial fibrosis and formation of multiple renal cysts which gradually enlarge and replace normal renal tissue, with each condition demonstrating subtle differences in the degree, location, and age-related development of cysts and fibrosis. Presentation varies from prenatal diagnosis of congenital multisystem syndromes to an asymptomatic childhood with development of complications in later adulthood and therefore clinicopathological correlation is important, including increasing use of targeted genetic testing or whole genome sequencing, allowing greater understanding of genetic pathophysiological mechanisms.","PeriodicalId":54634,"journal":{"name":"Pediatric and Developmental Pathology","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renal Pathology of Ciliopathies\",\"authors\":\"Thivya Sekar, Neil J. Sebire\",\"doi\":\"10.1177/10935266241242173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renal ciliopathies are a group of genetic disorders that affect the function of the primary cilium in the kidney, as well as other organs. Since primary cilia are important for regulation of cell signaling pathways, ciliary dysfunction results in a range of clinical manifestations, including renal failure, cyst formation, and hypertension. We summarize the current understanding of the pathophysiological and pathological features of renal ciliopathies in childhood, including autosomal dominant and recessive polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, as well as skeletal dysplasia associated renal ciliopathies. The genetic basis of these disorders is now well-established in many cases, with mutations in a large number of cilia-related genes such as PKD1, PKD2, BBS, MKS, and NPHP being responsible for the majority of cases. Renal ciliopathies are broadly characterized by development of interstitial fibrosis and formation of multiple renal cysts which gradually enlarge and replace normal renal tissue, with each condition demonstrating subtle differences in the degree, location, and age-related development of cysts and fibrosis. Presentation varies from prenatal diagnosis of congenital multisystem syndromes to an asymptomatic childhood with development of complications in later adulthood and therefore clinicopathological correlation is important, including increasing use of targeted genetic testing or whole genome sequencing, allowing greater understanding of genetic pathophysiological mechanisms.\",\"PeriodicalId\":54634,\"journal\":{\"name\":\"Pediatric and Developmental Pathology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric and Developmental Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10935266241242173\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric and Developmental Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10935266241242173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
Renal ciliopathies are a group of genetic disorders that affect the function of the primary cilium in the kidney, as well as other organs. Since primary cilia are important for regulation of cell signaling pathways, ciliary dysfunction results in a range of clinical manifestations, including renal failure, cyst formation, and hypertension. We summarize the current understanding of the pathophysiological and pathological features of renal ciliopathies in childhood, including autosomal dominant and recessive polycystic kidney disease, nephronophthisis, and Bardet-Biedl syndrome, as well as skeletal dysplasia associated renal ciliopathies. The genetic basis of these disorders is now well-established in many cases, with mutations in a large number of cilia-related genes such as PKD1, PKD2, BBS, MKS, and NPHP being responsible for the majority of cases. Renal ciliopathies are broadly characterized by development of interstitial fibrosis and formation of multiple renal cysts which gradually enlarge and replace normal renal tissue, with each condition demonstrating subtle differences in the degree, location, and age-related development of cysts and fibrosis. Presentation varies from prenatal diagnosis of congenital multisystem syndromes to an asymptomatic childhood with development of complications in later adulthood and therefore clinicopathological correlation is important, including increasing use of targeted genetic testing or whole genome sequencing, allowing greater understanding of genetic pathophysiological mechanisms.
期刊介绍:
The Journal covers the spectrum of disorders of early development (including embryology, placentology, and teratology), gestational and perinatal diseases, and all diseases of childhood. Studies may be in any field of experimental, anatomic, or clinical pathology, including molecular pathology. Case reports are published only if they provide new insights into disease mechanisms or new information.