对精神分裂症表观遗传老化的元分析揭示了与年龄、性别、病程和多基因风险的多方面关系

IF 4.8 2区 医学 Q1 GENETICS & HEREDITY Clinical Epigenetics Pub Date : 2024-04-08 DOI:10.1186/s13148-024-01660-8
Anil P. S. Ori, Loes M. Olde Loohuis, Jerry Guintivano, Eilis Hannon, Emma Dempster, David St. Clair, Nick J. Bass, Andrew McQuillin, Jonathan Mill, Patrick F. Sullivan, Rene S. Kahn, Steve Horvath, Roel A. Ophoff
{"title":"对精神分裂症表观遗传老化的元分析揭示了与年龄、性别、病程和多基因风险的多方面关系","authors":"Anil P. S. Ori, Loes M. Olde Loohuis, Jerry Guintivano, Eilis Hannon, Emma Dempster, David St. Clair, Nick J. Bass, Andrew McQuillin, Jonathan Mill, Patrick F. Sullivan, Rene S. Kahn, Steve Horvath, Roel A. Ophoff","doi":"10.1186/s13148-024-01660-8","DOIUrl":null,"url":null,"abstract":"The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02–5.61, P = 1.1E−03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis of epigenetic aging in schizophrenia reveals multifaceted relationships with age, sex, illness duration, and polygenic risk\",\"authors\":\"Anil P. S. Ori, Loes M. Olde Loohuis, Jerry Guintivano, Eilis Hannon, Emma Dempster, David St. Clair, Nick J. Bass, Andrew McQuillin, Jonathan Mill, Patrick F. Sullivan, Rene S. Kahn, Steve Horvath, Roel A. Ophoff\",\"doi\":\"10.1186/s13148-024-01660-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02–5.61, P = 1.1E−03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.\",\"PeriodicalId\":10366,\"journal\":{\"name\":\"Clinical Epigenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epigenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13148-024-01660-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01660-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

对生物年龄加速的研究可能有助于识别高危人群,减轻与年龄有关的疾病不断增加的全球负担。我们利用DNA甲基化(DNAm)时钟研究了精神分裂症(SCZ)的生物衰老,这种精神疾病与年龄相关的残疾和发病率增加有关。在四个欧洲队列的 1090 例 SCZ 病例和 1206 例对照的全血 DNAm 样本中,我们使用三种 DNAm 时钟(即 Hannum、Horvath 和 Levine)对不同的衰老进行了荟萃分析。为了剖析DNAm衰老如何导致SCZ,我们整合了病程和SCZ多基因风险的信息,并按照生理年龄和生理性别进行了分层分析。我们发现,在 SCZ 中,基于血液的 DNAm 老化与发病以来的病程无关。我们观察到了性别特异性和非线性年龄效应,这些效应在不同的时钟之间存在差异,并指出了在 SCZ 中老化改变可能存在的不同年龄窗口。最值得注意的是,与对照组相比,SCZ 病例的细胞固有年龄(Horvath 时钟)在年轻时减慢,而表型年龄(Levine 时钟)则在成年后加速。表型老化的加速在多基因负担较高的女性 SCZ 患者中最为明显,年龄加速为 + 3.82 岁(CI 2.02-5.61,P = 1.1E-03)。表型老化和SCZ多基因风险对疾病的影响是叠加的,共同解释了高达14.38%的疾病状态变异。我们的研究为越来越多的证据表明SCZ患者的DNAm老化发生改变做出了贡献,并指出SCZ患者在年轻时的内在年龄减速,而在成年后的表型年龄加速。由于表型年龄的增加与全因死亡风险的增加有关,我们的研究结果表明,根据莱文时钟的测量,特定的、可识别的患者群体的死亡风险增加。我们的研究没有发现 DNAm 的衰老可以用患者的病程来解释,但我们确实观察到了年龄和性别特异性效应,这值得进一步研究。最后,我们的研究结果表明,将遗传学和表观遗传学预测因子结合起来可以改善对疾病结果的预测,并有助于精神分裂症的疾病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meta-analysis of epigenetic aging in schizophrenia reveals multifaceted relationships with age, sex, illness duration, and polygenic risk
The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02–5.61, P = 1.1E−03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
150
期刊介绍: Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.
期刊最新文献
Effects of multisuperovulation on the transcription and genomic methylation of oocytes and offspring. Causal effects of cardiovascular health on five epigenetic clocks. Causal association of epigenetic age acceleration and risk of subacute thyroiditis: a bidirectional Mendelian randomization study Technical and biological sources of unreliability of Infinium probes on Illumina methylation microarrays Methylation alterations of imprinted genes in different placental diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1