{"title":"双物种凯勒-西格尔模型的高效数值方案及其三维爆破现象研究","authors":"Xueling Huang, Jie Shen","doi":"10.1007/s10440-024-00647-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider in this paper numerical approximation and simulation of a two-species Keller-Segel model. The model enjoys an energy dissipation law, mass conservation and bound or positivity preserving for the population density of two species. We construct a class of very efficient numerical schemes based on the generalized scalar auxiliary variable with relaxation which preserve unconditionally the essential properties of the model at the discrete level. We conduct a sequence of numerical tests to validate the properties of these schemes, and to study the blow-up phenomena of the model in a three-dimensional domain in parabolic-elliptic form and parabolic-parabolic form.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00647-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient Numerical Schemes for a Two-Species Keller-Segel Model and Investigation of Its Blowup Phenomena in 3D\",\"authors\":\"Xueling Huang, Jie Shen\",\"doi\":\"10.1007/s10440-024-00647-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider in this paper numerical approximation and simulation of a two-species Keller-Segel model. The model enjoys an energy dissipation law, mass conservation and bound or positivity preserving for the population density of two species. We construct a class of very efficient numerical schemes based on the generalized scalar auxiliary variable with relaxation which preserve unconditionally the essential properties of the model at the discrete level. We conduct a sequence of numerical tests to validate the properties of these schemes, and to study the blow-up phenomena of the model in a three-dimensional domain in parabolic-elliptic form and parabolic-parabolic form.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-024-00647-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00647-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00647-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Efficient Numerical Schemes for a Two-Species Keller-Segel Model and Investigation of Its Blowup Phenomena in 3D
We consider in this paper numerical approximation and simulation of a two-species Keller-Segel model. The model enjoys an energy dissipation law, mass conservation and bound or positivity preserving for the population density of two species. We construct a class of very efficient numerical schemes based on the generalized scalar auxiliary variable with relaxation which preserve unconditionally the essential properties of the model at the discrete level. We conduct a sequence of numerical tests to validate the properties of these schemes, and to study the blow-up phenomena of the model in a three-dimensional domain in parabolic-elliptic form and parabolic-parabolic form.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.