{"title":"硅光电二极管光谱灵敏度的温度漂移","authors":"Andriy Voronko, Denys Novikov, Oleksandr Shymanovskyi","doi":"10.3103/s073527272302005x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The spectral sensitivity change of a silicon photodiode with its temperature is analyzed in the article. This research area is relevant because silicon photodiodes are used as sensitive elements in temperature control systems of the vapour-phase epitaxy process. Technical characteristics of the obtained semiconductor devices are mostly determined by the quality of heterostructures used for their manufacture. The optical pyrometry method is used for the surface temperature precise control of the A3B5 solid solutions active layers during metalorganic chemical vapour deposition (MOCVD). Since the surface relief and parameters during deposition change significantly, classical pyrometry leads to significant measurement errors, so the pyrometry method with radiation compensation is used. This method combines the wafer surface radiation measurement and its reflectivity. This allows to determine the surface temperature true value, the layer thickness and the heat distribution uniformity on the wafer in real time.</p><p>However, for high precision, it is necessary to take into account the temperature coefficient of the silicon photodiode ampere-watt sensitivity change. The basics of MOCVD technology are discussed in this article. The features of the epitaxy process in the reactor with high-precision temperature control are highlighted.</p><p>The analytical and empirical study of change in silicon photodiode ampere-watt sensitivity and its effect on measurement accuracy are given. The research results improve the accuracy of real temperature measurement using pyrometric parameter control systems in MOCVD technology and help to understand and to take into account the influence of temperature factors on measurement accuracy to improve this technology.</p>","PeriodicalId":52470,"journal":{"name":"Radioelectronics and Communications Systems","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Drift of Silicon Photodiode Spectral Sensitivity\",\"authors\":\"Andriy Voronko, Denys Novikov, Oleksandr Shymanovskyi\",\"doi\":\"10.3103/s073527272302005x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The spectral sensitivity change of a silicon photodiode with its temperature is analyzed in the article. This research area is relevant because silicon photodiodes are used as sensitive elements in temperature control systems of the vapour-phase epitaxy process. Technical characteristics of the obtained semiconductor devices are mostly determined by the quality of heterostructures used for their manufacture. The optical pyrometry method is used for the surface temperature precise control of the A3B5 solid solutions active layers during metalorganic chemical vapour deposition (MOCVD). Since the surface relief and parameters during deposition change significantly, classical pyrometry leads to significant measurement errors, so the pyrometry method with radiation compensation is used. This method combines the wafer surface radiation measurement and its reflectivity. This allows to determine the surface temperature true value, the layer thickness and the heat distribution uniformity on the wafer in real time.</p><p>However, for high precision, it is necessary to take into account the temperature coefficient of the silicon photodiode ampere-watt sensitivity change. The basics of MOCVD technology are discussed in this article. The features of the epitaxy process in the reactor with high-precision temperature control are highlighted.</p><p>The analytical and empirical study of change in silicon photodiode ampere-watt sensitivity and its effect on measurement accuracy are given. The research results improve the accuracy of real temperature measurement using pyrometric parameter control systems in MOCVD technology and help to understand and to take into account the influence of temperature factors on measurement accuracy to improve this technology.</p>\",\"PeriodicalId\":52470,\"journal\":{\"name\":\"Radioelectronics and Communications Systems\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioelectronics and Communications Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s073527272302005x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s073527272302005x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Temperature Drift of Silicon Photodiode Spectral Sensitivity
Abstract
The spectral sensitivity change of a silicon photodiode with its temperature is analyzed in the article. This research area is relevant because silicon photodiodes are used as sensitive elements in temperature control systems of the vapour-phase epitaxy process. Technical characteristics of the obtained semiconductor devices are mostly determined by the quality of heterostructures used for their manufacture. The optical pyrometry method is used for the surface temperature precise control of the A3B5 solid solutions active layers during metalorganic chemical vapour deposition (MOCVD). Since the surface relief and parameters during deposition change significantly, classical pyrometry leads to significant measurement errors, so the pyrometry method with radiation compensation is used. This method combines the wafer surface radiation measurement and its reflectivity. This allows to determine the surface temperature true value, the layer thickness and the heat distribution uniformity on the wafer in real time.
However, for high precision, it is necessary to take into account the temperature coefficient of the silicon photodiode ampere-watt sensitivity change. The basics of MOCVD technology are discussed in this article. The features of the epitaxy process in the reactor with high-precision temperature control are highlighted.
The analytical and empirical study of change in silicon photodiode ampere-watt sensitivity and its effect on measurement accuracy are given. The research results improve the accuracy of real temperature measurement using pyrometric parameter control systems in MOCVD technology and help to understand and to take into account the influence of temperature factors on measurement accuracy to improve this technology.
期刊介绍:
Radioelectronics and Communications Systems covers urgent theoretical problems of radio-engineering; results of research efforts, leading experience, which determines directions and development of scientific research in radio engineering and radio electronics; publishes materials of scientific conferences and meetings; information on scientific work in higher educational institutions; newsreel and bibliographic materials. Journal publishes articles in the following sections:Antenna-feeding and microwave devices;Vacuum and gas-discharge devices;Solid-state electronics and integral circuit engineering;Optical radar, communication and information processing systems;Use of computers for research and design of radio-electronic devices and systems;Quantum electronic devices;Design of radio-electronic devices;Radar and radio navigation;Radio engineering devices and systems;Radio engineering theory;Medical radioelectronics.