砌体填充墙加固 CFRP 循环行为的数值和实验研究

IF 1.8 4区 工程技术 Q3 ENGINEERING, CIVIL International Journal of Civil Engineering Pub Date : 2024-04-02 DOI:10.1007/s40999-024-00955-4
{"title":"砌体填充墙加固 CFRP 循环行为的数值和实验研究","authors":"","doi":"10.1007/s40999-024-00955-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper presents verification of the numerical model of masonry infill walls against the experimental results. Three cases are investigated: an undamaged model, a damaged model, and a carbon fiber-reinforced polymer (CFRP) strip. ABAQUS commercial finite element model (FEM) software was used in the modeling. Nonlinear behavior as well as cracking and crushing of masonry bricks were simulated using the Concrete Damaged Plasticity (CDP) model. To solve this, a three-dimensional simplified micro-model was used. Experimental and simulation of the hysteresis curve, skeleton curve, damage patterns, maximum and minimum stresses, and plane strain distribution were compared. The changes in natural frequencies, and mode shapes before and after CFRP strengthening masonry wall are evaluated. A sensitivity analysis was done to study the effect of damage and strengthening on the nonlinear behavior of steel frames with masonry infill. This investigation demonstrated that the numerical model was able to effectively simulate and predict the strength of these models. Then a look at the effect on seismic performance is reported and commented on.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and Experimental Investigation on Cyclic Behavior of Masonry Infill Walls Retrofitted with CFRP\",\"authors\":\"\",\"doi\":\"10.1007/s40999-024-00955-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This paper presents verification of the numerical model of masonry infill walls against the experimental results. Three cases are investigated: an undamaged model, a damaged model, and a carbon fiber-reinforced polymer (CFRP) strip. ABAQUS commercial finite element model (FEM) software was used in the modeling. Nonlinear behavior as well as cracking and crushing of masonry bricks were simulated using the Concrete Damaged Plasticity (CDP) model. To solve this, a three-dimensional simplified micro-model was used. Experimental and simulation of the hysteresis curve, skeleton curve, damage patterns, maximum and minimum stresses, and plane strain distribution were compared. The changes in natural frequencies, and mode shapes before and after CFRP strengthening masonry wall are evaluated. A sensitivity analysis was done to study the effect of damage and strengthening on the nonlinear behavior of steel frames with masonry infill. This investigation demonstrated that the numerical model was able to effectively simulate and predict the strength of these models. Then a look at the effect on seismic performance is reported and commented on.</p>\",\"PeriodicalId\":50331,\"journal\":{\"name\":\"International Journal of Civil Engineering\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40999-024-00955-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00955-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文根据实验结果对砌体填充墙的数值模型进行了验证。研究了三种情况:未损坏模型、损坏模型和碳纤维增强聚合物(CFRP)带。建模过程中使用了 ABAQUS 商业有限元模型(FEM)软件。使用混凝土损伤塑性(CDP)模型模拟了砌体砖的非线性行为以及开裂和破碎。为了解决这个问题,使用了一个三维简化微观模型。比较了实验和模拟的滞后曲线、骨架曲线、破坏模式、最大和最小应力以及平面应变分布。评估了 CFRP 加固砌体墙前后固有频率和模态振型的变化。还进行了敏感性分析,以研究损伤和加固对带有砌体填充物的钢框架非线性行为的影响。这项研究表明,数值模型能够有效地模拟和预测这些模型的强度。然后报告并评论了对抗震性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and Experimental Investigation on Cyclic Behavior of Masonry Infill Walls Retrofitted with CFRP

Abstract

This paper presents verification of the numerical model of masonry infill walls against the experimental results. Three cases are investigated: an undamaged model, a damaged model, and a carbon fiber-reinforced polymer (CFRP) strip. ABAQUS commercial finite element model (FEM) software was used in the modeling. Nonlinear behavior as well as cracking and crushing of masonry bricks were simulated using the Concrete Damaged Plasticity (CDP) model. To solve this, a three-dimensional simplified micro-model was used. Experimental and simulation of the hysteresis curve, skeleton curve, damage patterns, maximum and minimum stresses, and plane strain distribution were compared. The changes in natural frequencies, and mode shapes before and after CFRP strengthening masonry wall are evaluated. A sensitivity analysis was done to study the effect of damage and strengthening on the nonlinear behavior of steel frames with masonry infill. This investigation demonstrated that the numerical model was able to effectively simulate and predict the strength of these models. Then a look at the effect on seismic performance is reported and commented on.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
5.90%
发文量
83
审稿时长
15 months
期刊介绍: International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.
期刊最新文献
Experimental and Analytical Study of Tensile and Bond Performances of Glass Fabric Reinforced Cementitious Matrix for Retrofit Applications on Concrete Surfaces Boundary Effects for ESB Container in Dynamic Centrifuge Test Incorporating Numerical Simulation Modeling Disruption in the Rail-Road Network and Identifying Critical Terminals Mechanical Behaviors of Steel Segment Support Structures for TBM-Excavated Coal Mine Tunnels: Experimental and Numerical Study Numerical Investigation on the Efficiency of Self-Centering Two-Yield Buckling Restrained Brace on Low-Rise Steel Frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1