医疗保险优势医疗服务提供者网络对各专科医师的限制性

IF 3.1 2区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Health Services Research Pub Date : 2024-04-09 DOI:10.1111/1475-6773.14308
Yevgeniy Feyman PhD, Jose Figueroa MD, MPH, Melissa Garrido PhD, Gretchen Jacobson PhD, Michael Adelberg MA, MPP, Austin Frakt PhD
{"title":"医疗保险优势医疗服务提供者网络对各专科医师的限制性","authors":"Yevgeniy Feyman PhD,&nbsp;Jose Figueroa MD, MPH,&nbsp;Melissa Garrido PhD,&nbsp;Gretchen Jacobson PhD,&nbsp;Michael Adelberg MA, MPP,&nbsp;Austin Frakt PhD","doi":"10.1111/1475-6773.14308","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>The objective was to measure specialty provider networks in Medicare Advantage (MA) and examine associations with market factors.</p>\n </section>\n \n <section>\n \n <h3> Data Sources and Study Setting</h3>\n \n <p>We relied on traditional Medicare (TM) and MA prescription drug event data from 2011 to 2017 for all Medicare beneficiaries in the United States as well as data from the Area Health Resources File.</p>\n </section>\n \n <section>\n \n <h3> Study Design</h3>\n \n <p>Relying on a recently developed and validated prediction model, we calculated the provider network restrictiveness of MA contracts for nine high-prescribing specialties. We characterized network restrictiveness through an observed-to-expected ratio, calculated as the number of unique providers seen by MA beneficiaries divided by the number expected based on the prediction model. We assessed the relationship between network restrictiveness and market factors across specialties with multivariable linear regression.</p>\n </section>\n \n <section>\n \n <h3> Data Collection/Extraction Methods</h3>\n \n <p>Prescription drug event data for a 20% random sample of beneficiaries enrolled in prescription drug coverage from 2011 to 2017.</p>\n </section>\n \n <section>\n \n <h3> Principal Findings</h3>\n \n <p>Provider networks in MA varied in restrictiveness. OB-Gynecology was the most restrictive with enrollees seeing 34.5% (95% CI: 34.3%–34.7%) as many providers as they would absent network restrictions; cardiology was the least restrictive with enrollees seeing 58.6% (95% CI: 58.4%–58.8%) as many providers as they otherwise would. Factors associated with less restrictive networks included the county-level TM average hierarchical condition category score (0.06; 95% CI: 0.04–0.07), the county-level number of doctors per 1000 population (0.04; 95% CI: 0.02–0.05), the natural log of local median household income (0.03; 95% CI: 0.007–0.05), and the parent company's market share in the county (0.16; 95% CI: 0.13–0.18). Rurality was a major predictor of more restrictive networks (−0.28; 95% CI: −0.32 to −0.24).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our findings suggest that rural beneficiaries may face disproportionately reduced access in these networks and that efforts to improve access should vary by specialty.</p>\n </section>\n </div>","PeriodicalId":55065,"journal":{"name":"Health Services Research","volume":"59 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restrictiveness of Medicare Advantage provider networks across physician specialties\",\"authors\":\"Yevgeniy Feyman PhD,&nbsp;Jose Figueroa MD, MPH,&nbsp;Melissa Garrido PhD,&nbsp;Gretchen Jacobson PhD,&nbsp;Michael Adelberg MA, MPP,&nbsp;Austin Frakt PhD\",\"doi\":\"10.1111/1475-6773.14308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>The objective was to measure specialty provider networks in Medicare Advantage (MA) and examine associations with market factors.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Data Sources and Study Setting</h3>\\n \\n <p>We relied on traditional Medicare (TM) and MA prescription drug event data from 2011 to 2017 for all Medicare beneficiaries in the United States as well as data from the Area Health Resources File.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Study Design</h3>\\n \\n <p>Relying on a recently developed and validated prediction model, we calculated the provider network restrictiveness of MA contracts for nine high-prescribing specialties. We characterized network restrictiveness through an observed-to-expected ratio, calculated as the number of unique providers seen by MA beneficiaries divided by the number expected based on the prediction model. We assessed the relationship between network restrictiveness and market factors across specialties with multivariable linear regression.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Data Collection/Extraction Methods</h3>\\n \\n <p>Prescription drug event data for a 20% random sample of beneficiaries enrolled in prescription drug coverage from 2011 to 2017.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Principal Findings</h3>\\n \\n <p>Provider networks in MA varied in restrictiveness. OB-Gynecology was the most restrictive with enrollees seeing 34.5% (95% CI: 34.3%–34.7%) as many providers as they would absent network restrictions; cardiology was the least restrictive with enrollees seeing 58.6% (95% CI: 58.4%–58.8%) as many providers as they otherwise would. Factors associated with less restrictive networks included the county-level TM average hierarchical condition category score (0.06; 95% CI: 0.04–0.07), the county-level number of doctors per 1000 population (0.04; 95% CI: 0.02–0.05), the natural log of local median household income (0.03; 95% CI: 0.007–0.05), and the parent company's market share in the county (0.16; 95% CI: 0.13–0.18). Rurality was a major predictor of more restrictive networks (−0.28; 95% CI: −0.32 to −0.24).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Our findings suggest that rural beneficiaries may face disproportionately reduced access in these networks and that efforts to improve access should vary by specialty.</p>\\n </section>\\n </div>\",\"PeriodicalId\":55065,\"journal\":{\"name\":\"Health Services Research\",\"volume\":\"59 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Services Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1475-6773.14308\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1475-6773.14308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的是衡量医疗保险优势(MA)中的专科医疗服务提供者网络,并研究其与市场因素的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restrictiveness of Medicare Advantage provider networks across physician specialties

Objective

The objective was to measure specialty provider networks in Medicare Advantage (MA) and examine associations with market factors.

Data Sources and Study Setting

We relied on traditional Medicare (TM) and MA prescription drug event data from 2011 to 2017 for all Medicare beneficiaries in the United States as well as data from the Area Health Resources File.

Study Design

Relying on a recently developed and validated prediction model, we calculated the provider network restrictiveness of MA contracts for nine high-prescribing specialties. We characterized network restrictiveness through an observed-to-expected ratio, calculated as the number of unique providers seen by MA beneficiaries divided by the number expected based on the prediction model. We assessed the relationship between network restrictiveness and market factors across specialties with multivariable linear regression.

Data Collection/Extraction Methods

Prescription drug event data for a 20% random sample of beneficiaries enrolled in prescription drug coverage from 2011 to 2017.

Principal Findings

Provider networks in MA varied in restrictiveness. OB-Gynecology was the most restrictive with enrollees seeing 34.5% (95% CI: 34.3%–34.7%) as many providers as they would absent network restrictions; cardiology was the least restrictive with enrollees seeing 58.6% (95% CI: 58.4%–58.8%) as many providers as they otherwise would. Factors associated with less restrictive networks included the county-level TM average hierarchical condition category score (0.06; 95% CI: 0.04–0.07), the county-level number of doctors per 1000 population (0.04; 95% CI: 0.02–0.05), the natural log of local median household income (0.03; 95% CI: 0.007–0.05), and the parent company's market share in the county (0.16; 95% CI: 0.13–0.18). Rurality was a major predictor of more restrictive networks (−0.28; 95% CI: −0.32 to −0.24).

Conclusions

Our findings suggest that rural beneficiaries may face disproportionately reduced access in these networks and that efforts to improve access should vary by specialty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Services Research
Health Services Research 医学-卫生保健
CiteScore
4.80
自引率
5.90%
发文量
193
审稿时长
4-8 weeks
期刊介绍: Health Services Research (HSR) is a peer-reviewed scholarly journal that provides researchers and public and private policymakers with the latest research findings, methods, and concepts related to the financing, organization, delivery, evaluation, and outcomes of health services. Rated as one of the top journals in the fields of health policy and services and health care administration, HSR publishes outstanding articles reporting the findings of original investigations that expand knowledge and understanding of the wide-ranging field of health care and that will help to improve the health of individuals and communities.
期刊最新文献
Evaluating a predictive model of avoidable hospital events for race- and sex-based bias. Addressing social and health needs in health care: Characterizing case managers' work to address patient-defined goals. Changes in healthcare costs and utilization for Medicaid recipients who received supportive housing through a payer-community-based housing partnership. Exploring the health impacts of climate change: Challenges and considerations for health services research. Commercial insurers' market power and hospital prices in Medicaid managed care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1