测试量子推理:问卷的开发、验证和应用

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH Physical Review Physics Education Research Pub Date : 2024-04-05 DOI:10.1103/physrevphyseducres.20.010122
Moritz Waitzmann, Ruediger Scholz, Susanne Wessnigk
{"title":"测试量子推理:问卷的开发、验证和应用","authors":"Moritz Waitzmann, Ruediger Scholz, Susanne Wessnigk","doi":"10.1103/physrevphyseducres.20.010122","DOIUrl":null,"url":null,"abstract":"Clear and rigorous quantum reasoning is needed to explain quantum physical phenomena. As pillars of true quantum physical explanations, we suggest specific quantum reasoning derived from quantum physical key ideas. An experiment is suggested to support such a quantum reasoning, in which a quantized radiation field interacts with an optical beam splitter, leading to experimental results conflicting with classical physical predictions. The results, however, can be explained consistently with a quantum reasoning based on the key ideas of probability, superposition, and interference (PSI). In this quantum optical key experiment the optical beam splitter prepares a superposition of single photon states and a Michelson interferometer is used to detect the superposition via controlled propagation phases. Although different single photon experimental setups (aimed at helping students to gain access to foundational issues in quantum physics) have been discussed in the past, the wave-particle dualism bound to classical physics maintains its predominance as an explanation pattern for the interpretation of these experiments. The study presented here investigates the effect of the quantum optical key experiment on the ability of students to use quantum reasoning based on the key ideas of PSI to overcome the naive wave-particle dualism. The current state of relevant studies that test student access to quantum physics can roughly be divided into two distinct areas: one tests how mathematical abilities help them to understand quantum physics and one tests how nonmathematical representations of a set of specific quantum theoretical traits (“Wesenszüge”) lead to a deeper understanding of quantum physics. There is a lack of questionnaires that focus on the idea of developing quantum reasoning based on superposition, probability, and interference of quantum states combined with a real experiment using true quantum light. In the first part of the article, we describe the physical modeling and present the development of the questionnaire. The set of items has been constructed from newly developed items and combined with well-tested ones. The validation of the set addresses qualitative and quantitative methods. In the second part, we give a pre- and poststudy examination of the impact of the quantum optical key experiment on students’ quantum reasoning. A significant increase in the number of students using quantum arguments is based on PSI reasoning for the explanation of an interference, such as the behavior of single photon states. Though the increase is significant, we found only minor changes in a particular issue to the students’ reasoning when approaching quantum physics as illustrated by a sample of answers given in the second part of the article. The concept of quantum states and the principle of superposition still appear particularly difficult.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing quantum reasoning: Developing, validating, and application of a questionnaire\",\"authors\":\"Moritz Waitzmann, Ruediger Scholz, Susanne Wessnigk\",\"doi\":\"10.1103/physrevphyseducres.20.010122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clear and rigorous quantum reasoning is needed to explain quantum physical phenomena. As pillars of true quantum physical explanations, we suggest specific quantum reasoning derived from quantum physical key ideas. An experiment is suggested to support such a quantum reasoning, in which a quantized radiation field interacts with an optical beam splitter, leading to experimental results conflicting with classical physical predictions. The results, however, can be explained consistently with a quantum reasoning based on the key ideas of probability, superposition, and interference (PSI). In this quantum optical key experiment the optical beam splitter prepares a superposition of single photon states and a Michelson interferometer is used to detect the superposition via controlled propagation phases. Although different single photon experimental setups (aimed at helping students to gain access to foundational issues in quantum physics) have been discussed in the past, the wave-particle dualism bound to classical physics maintains its predominance as an explanation pattern for the interpretation of these experiments. The study presented here investigates the effect of the quantum optical key experiment on the ability of students to use quantum reasoning based on the key ideas of PSI to overcome the naive wave-particle dualism. The current state of relevant studies that test student access to quantum physics can roughly be divided into two distinct areas: one tests how mathematical abilities help them to understand quantum physics and one tests how nonmathematical representations of a set of specific quantum theoretical traits (“Wesenszüge”) lead to a deeper understanding of quantum physics. There is a lack of questionnaires that focus on the idea of developing quantum reasoning based on superposition, probability, and interference of quantum states combined with a real experiment using true quantum light. In the first part of the article, we describe the physical modeling and present the development of the questionnaire. The set of items has been constructed from newly developed items and combined with well-tested ones. The validation of the set addresses qualitative and quantitative methods. In the second part, we give a pre- and poststudy examination of the impact of the quantum optical key experiment on students’ quantum reasoning. A significant increase in the number of students using quantum arguments is based on PSI reasoning for the explanation of an interference, such as the behavior of single photon states. Though the increase is significant, we found only minor changes in a particular issue to the students’ reasoning when approaching quantum physics as illustrated by a sample of answers given in the second part of the article. The concept of quantum states and the principle of superposition still appear particularly difficult.\",\"PeriodicalId\":54296,\"journal\":{\"name\":\"Physical Review Physics Education Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Physics Education Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevphyseducres.20.010122\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010122","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

解释量子物理现象需要清晰严谨的量子推理。作为真正量子物理解释的支柱,我们提出了从量子物理关键思想中衍生出来的具体量子推理。为支持这种量子推理,我们提出了一个实验:量子化辐射场与光分束器相互作用,导致实验结果与经典物理预测相冲突。然而,这些结果可以用基于概率、叠加和干涉(PSI)等关键思想的量子推理来解释。在这个量子光学密钥实验中,光学分束器准备了单光子状态的叠加,并使用迈克尔逊干涉仪通过控制传播相位来检测叠加。尽管过去曾讨论过不同的单光子实验设置(旨在帮助学生获得量子物理学的基础问题),但束缚于经典物理学的波粒二象性仍然是解释这些实验的主要解释模式。本文介绍的研究调查了量子光学密钥实验对学生基于 PSI 关键思想运用量子推理克服天真的波粒二象性的能力的影响。目前,测试学生对量子物理的掌握程度的相关研究大致可分为两个不同的领域:一个是测试数学能力如何帮助学生理解量子物理,另一个是测试对一组特定量子理论特征("Wesenszüge")的非数学表征如何导致学生加深对量子物理的理解。目前还缺少一份问卷调查,其重点是在量子态的叠加、概率和干涉的基础上,结合使用真正量子光的真实实验,发展量子推理能力。在文章的第一部分,我们描述了物理模型,并介绍了问卷的开发过程。这套题目是由新开发的题目和经过充分测试的题目组合而成的。这套问卷的验证采用了定性和定量方法。在第二部分,我们对量子光学密钥实验对学生量子推理能力的影响进行了研究前和研究后的检验。使用基于 PSI 推理的量子论证来解释干涉(如单光子状态的行为)的学生人数大幅增加。虽然增加幅度很大,但我们发现学生们在接触量子物理时,在某一特定问题上的推理只有细微的变化,文章第二部分给出的答案样本就说明了这一点。量子态的概念和叠加原理仍然显得特别困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing quantum reasoning: Developing, validating, and application of a questionnaire
Clear and rigorous quantum reasoning is needed to explain quantum physical phenomena. As pillars of true quantum physical explanations, we suggest specific quantum reasoning derived from quantum physical key ideas. An experiment is suggested to support such a quantum reasoning, in which a quantized radiation field interacts with an optical beam splitter, leading to experimental results conflicting with classical physical predictions. The results, however, can be explained consistently with a quantum reasoning based on the key ideas of probability, superposition, and interference (PSI). In this quantum optical key experiment the optical beam splitter prepares a superposition of single photon states and a Michelson interferometer is used to detect the superposition via controlled propagation phases. Although different single photon experimental setups (aimed at helping students to gain access to foundational issues in quantum physics) have been discussed in the past, the wave-particle dualism bound to classical physics maintains its predominance as an explanation pattern for the interpretation of these experiments. The study presented here investigates the effect of the quantum optical key experiment on the ability of students to use quantum reasoning based on the key ideas of PSI to overcome the naive wave-particle dualism. The current state of relevant studies that test student access to quantum physics can roughly be divided into two distinct areas: one tests how mathematical abilities help them to understand quantum physics and one tests how nonmathematical representations of a set of specific quantum theoretical traits (“Wesenszüge”) lead to a deeper understanding of quantum physics. There is a lack of questionnaires that focus on the idea of developing quantum reasoning based on superposition, probability, and interference of quantum states combined with a real experiment using true quantum light. In the first part of the article, we describe the physical modeling and present the development of the questionnaire. The set of items has been constructed from newly developed items and combined with well-tested ones. The validation of the set addresses qualitative and quantitative methods. In the second part, we give a pre- and poststudy examination of the impact of the quantum optical key experiment on students’ quantum reasoning. A significant increase in the number of students using quantum arguments is based on PSI reasoning for the explanation of an interference, such as the behavior of single photon states. Though the increase is significant, we found only minor changes in a particular issue to the students’ reasoning when approaching quantum physics as illustrated by a sample of answers given in the second part of the article. The concept of quantum states and the principle of superposition still appear particularly difficult.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Physics Education Research
Physical Review Physics Education Research Social Sciences-Education
CiteScore
5.70
自引率
41.90%
发文量
84
审稿时长
32 weeks
期刊介绍: PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to: Educational policy Instructional strategies, and materials development Research methodology Epistemology, attitudes, and beliefs Learning environment Scientific reasoning and problem solving Diversity and inclusion Learning theory Student participation Faculty and teacher professional development
期刊最新文献
Erratum: Development and validation of a conceptual multiple-choice survey instrument to assess student understanding of introductory thermodynamics [Phys. Rev. Phys. Educ. Res. 19, 020112 (2023)] Reinforcing mindware or supporting cognitive reflection: Testing two strategies for addressing a persistent learning challenge in the context of air resistance How women and lesbian, gay, bisexual, transgender, and queer physics doctoral students navigate graduate education: The roles of professional environments and social networks Evolving study strategies and support structures of introductory physics students Effectiveness of conceptual-framework-based instruction on promoting knowledge integration in learning simple electric circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1