{"title":"三叶草使用数据驱动方法确定差异表达基因优先次序的无偏方法","authors":"Gina Miku Oba, Ryuichiro Nakato","doi":"10.1111/gtc.13119","DOIUrl":null,"url":null,"abstract":"<p>Identifying key genes from a list of differentially expressed genes (DEGs) is a critical step in transcriptome analysis. However, current methods, including Gene Ontology analysis and manual annotation, essentially rely on existing knowledge, which is highly biased depending on the extent of the literature. As a result, understudied genes, some of which may be associated with important molecular mechanisms, are often ignored or remain obscure. To address this problem, we propose Clover, a data-driven scoring method to specifically highlight understudied genes. Clover aims to prioritize genes associated with important molecular mechanisms by integrating three metrics: the likelihood of appearing in the DEG list, tissue specificity, and number of publications. We applied Clover to Alzheimer's disease data and confirmed that it successfully detected known associated genes. Moreover, Clover effectively prioritized understudied but potentially druggable genes. Overall, our method offers a novel approach to gene characterization and has the potential to expand our understanding of gene functions. Clover is an open-source software written in Python3 and available on GitHub at https://github.com/G708/Clover.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13119","citationCount":"0","resultStr":"{\"title\":\"Clover: An unbiased method for prioritizing differentially expressed genes using a data-driven approach\",\"authors\":\"Gina Miku Oba, Ryuichiro Nakato\",\"doi\":\"10.1111/gtc.13119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying key genes from a list of differentially expressed genes (DEGs) is a critical step in transcriptome analysis. However, current methods, including Gene Ontology analysis and manual annotation, essentially rely on existing knowledge, which is highly biased depending on the extent of the literature. As a result, understudied genes, some of which may be associated with important molecular mechanisms, are often ignored or remain obscure. To address this problem, we propose Clover, a data-driven scoring method to specifically highlight understudied genes. Clover aims to prioritize genes associated with important molecular mechanisms by integrating three metrics: the likelihood of appearing in the DEG list, tissue specificity, and number of publications. We applied Clover to Alzheimer's disease data and confirmed that it successfully detected known associated genes. Moreover, Clover effectively prioritized understudied but potentially druggable genes. Overall, our method offers a novel approach to gene characterization and has the potential to expand our understanding of gene functions. Clover is an open-source software written in Python3 and available on GitHub at https://github.com/G708/Clover.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13119\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13119","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Clover: An unbiased method for prioritizing differentially expressed genes using a data-driven approach
Identifying key genes from a list of differentially expressed genes (DEGs) is a critical step in transcriptome analysis. However, current methods, including Gene Ontology analysis and manual annotation, essentially rely on existing knowledge, which is highly biased depending on the extent of the literature. As a result, understudied genes, some of which may be associated with important molecular mechanisms, are often ignored or remain obscure. To address this problem, we propose Clover, a data-driven scoring method to specifically highlight understudied genes. Clover aims to prioritize genes associated with important molecular mechanisms by integrating three metrics: the likelihood of appearing in the DEG list, tissue specificity, and number of publications. We applied Clover to Alzheimer's disease data and confirmed that it successfully detected known associated genes. Moreover, Clover effectively prioritized understudied but potentially druggable genes. Overall, our method offers a novel approach to gene characterization and has the potential to expand our understanding of gene functions. Clover is an open-source software written in Python3 and available on GitHub at https://github.com/G708/Clover.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.