Multi3D:三维感知多模态图像合成

IF 17.3 3区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computational Visual Media Pub Date : 2024-04-03 DOI:10.1007/s41095-024-0422-4
{"title":"Multi3D:三维感知多模态图像合成","authors":"","doi":"10.1007/s41095-024-0422-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>3D-aware image synthesis has attained high quality and robust 3D consistency. Existing 3D controllable generative models are designed to synthesize 3D-aware images through a single modality, such as 2D segmentation or sketches, but lack the ability to finely control generated content, such as texture and age. In pursuit of enhancing user-guided controllability, we propose Multi3D, a 3D-aware controllable image synthesis model that supports multi-modal input. Our model can govern the geometry of the generated image using a 2D label map, such as a segmentation or sketch map, while concurrently regulating the appearance of the generated image through a textual description. To demonstrate the effectiveness of our method, we have conducted experiments on multiple datasets, including CelebAMask-HQ, AFHQ-cat, and shapenet-car. Qualitative and quantitative evaluations show that our method outperforms existing state-of-the-art methods. <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/41095_2024_422_Fig1_HTML.jpg\"/> </span> </span></p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":"15 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi3D: 3D-aware multimodal image synthesis\",\"authors\":\"\",\"doi\":\"10.1007/s41095-024-0422-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>3D-aware image synthesis has attained high quality and robust 3D consistency. Existing 3D controllable generative models are designed to synthesize 3D-aware images through a single modality, such as 2D segmentation or sketches, but lack the ability to finely control generated content, such as texture and age. In pursuit of enhancing user-guided controllability, we propose Multi3D, a 3D-aware controllable image synthesis model that supports multi-modal input. Our model can govern the geometry of the generated image using a 2D label map, such as a segmentation or sketch map, while concurrently regulating the appearance of the generated image through a textual description. To demonstrate the effectiveness of our method, we have conducted experiments on multiple datasets, including CelebAMask-HQ, AFHQ-cat, and shapenet-car. Qualitative and quantitative evaluations show that our method outperforms existing state-of-the-art methods. <span> <span> <img alt=\\\"\\\" src=\\\"https://static-content.springer.com/image/MediaObjects/41095_2024_422_Fig1_HTML.jpg\\\"/> </span> </span></p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-024-0422-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-024-0422-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 三维感知图像合成已经实现了高质量和稳健的三维一致性。现有的三维可控生成模型旨在通过二维分割或草图等单一方式合成三维感知图像,但缺乏精细控制生成内容(如纹理和年龄)的能力。为了提高用户引导的可控性,我们提出了支持多模态输入的 3D 感知可控图像合成模型 Multi3D。我们的模型可以使用二维标签图(如分割图或草图)来控制生成图像的几何形状,同时通过文字描述来控制生成图像的外观。为了证明我们方法的有效性,我们在多个数据集上进行了实验,包括 CelebAMask-HQ、AFHQ-cat 和 shapenet-car。定性和定量评估结果表明,我们的方法优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi3D: 3D-aware multimodal image synthesis

Abstract

3D-aware image synthesis has attained high quality and robust 3D consistency. Existing 3D controllable generative models are designed to synthesize 3D-aware images through a single modality, such as 2D segmentation or sketches, but lack the ability to finely control generated content, such as texture and age. In pursuit of enhancing user-guided controllability, we propose Multi3D, a 3D-aware controllable image synthesis model that supports multi-modal input. Our model can govern the geometry of the generated image using a 2D label map, such as a segmentation or sketch map, while concurrently regulating the appearance of the generated image through a textual description. To demonstrate the effectiveness of our method, we have conducted experiments on multiple datasets, including CelebAMask-HQ, AFHQ-cat, and shapenet-car. Qualitative and quantitative evaluations show that our method outperforms existing state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Visual Media
Computational Visual Media Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
16.90
自引率
5.80%
发文量
243
审稿时长
6 weeks
期刊介绍: Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media. Computational Visual Media publishes articles that focus on, but are not limited to, the following areas: • Editing and composition of visual media • Geometric computing for images and video • Geometry modeling and processing • Machine learning for visual media • Physically based animation • Realistic rendering • Recognition and understanding of visual media • Visual computing for robotics • Visualization and visual analytics Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope. This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.
期刊最新文献
TrafPS: A shapley-based visual analytics approach to interpret traffic CLIP-Flow: Decoding images encoded in CLIP space CLIP-SP: Vision-language model with adaptive prompting for scene parsing SGformer: Boosting transformers for indoor lighting estimation from a single image Central similarity consistency hashing for asymmetric image retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1