利用多源卫星观测数据,以 1° × 1° 的空间分辨率重构 2016 至 2019 年全球每日 XCO2

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-04-01 DOI:10.1117/1.jrs.18.028502
Yao Huang, Rui Wang, Ming Ju, Xianxun Zhu, Yanan Xie
{"title":"利用多源卫星观测数据,以 1° × 1° 的空间分辨率重构 2016 至 2019 年全球每日 XCO2","authors":"Yao Huang, Rui Wang, Ming Ju, Xianxun Zhu, Yanan Xie","doi":"10.1117/1.jrs.18.028502","DOIUrl":null,"url":null,"abstract":"The multisource satellite observation data have been widely used in carbon cycle research owing to their long-term and large-scale characteristics. However, the sparse sampling density of satellite observation data often results in incomplete spatiotemporal coverage at certain time intervals, which hinders the accurate representation of global carbon dioxide (CO2) concentration variations and is inadequate for supporting research applications with different precision requirements. To address this issue, a new multiscale fixed rank kriging is proposed to generate long-term daily scale column-averaged dry-air mole fraction of CO2 (XCO2) products from 2016 to 2019 over the globe on grids of 1°, for which the XCO2 data from Orbiting Carbon Observatory-2, Orbiting Carbon Observatory-3, and Greenhouse gases Observing SATellite are applied. Experimental results show that the dataset has a high spatiotemporal resolution and coverage validated by the Total Carbon Column Observing Network data to effectively fill gaps in satellite observation data, with cross-validation of R2=0.93 and root mean square error = 1.06 ppm. Moreover, we analyze the spatial distribution and seasonal variation characteristics of global and Chinese XCO2 from 2016 to 2019, with XCO2 presenting an obvious latitudinal gradient and seasonal periodicity in space. The proposed method establishes a foundational research dataset for the analysis of spatiotemporal variation characteristics of CO2 concentration at global and regional scales, as well as investigations on carbon sources and sink.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"100 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing global daily XCO2 at 1° × 1° spatial resolution from 2016 to 2019 with multisource satellite observation data\",\"authors\":\"Yao Huang, Rui Wang, Ming Ju, Xianxun Zhu, Yanan Xie\",\"doi\":\"10.1117/1.jrs.18.028502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multisource satellite observation data have been widely used in carbon cycle research owing to their long-term and large-scale characteristics. However, the sparse sampling density of satellite observation data often results in incomplete spatiotemporal coverage at certain time intervals, which hinders the accurate representation of global carbon dioxide (CO2) concentration variations and is inadequate for supporting research applications with different precision requirements. To address this issue, a new multiscale fixed rank kriging is proposed to generate long-term daily scale column-averaged dry-air mole fraction of CO2 (XCO2) products from 2016 to 2019 over the globe on grids of 1°, for which the XCO2 data from Orbiting Carbon Observatory-2, Orbiting Carbon Observatory-3, and Greenhouse gases Observing SATellite are applied. Experimental results show that the dataset has a high spatiotemporal resolution and coverage validated by the Total Carbon Column Observing Network data to effectively fill gaps in satellite observation data, with cross-validation of R2=0.93 and root mean square error = 1.06 ppm. Moreover, we analyze the spatial distribution and seasonal variation characteristics of global and Chinese XCO2 from 2016 to 2019, with XCO2 presenting an obvious latitudinal gradient and seasonal periodicity in space. The proposed method establishes a foundational research dataset for the analysis of spatiotemporal variation characteristics of CO2 concentration at global and regional scales, as well as investigations on carbon sources and sink.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.028502\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.028502","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多源卫星观测数据具有长期性和大尺度的特点,已被广泛应用于碳循环研究。然而,由于卫星观测数据的采样密度稀疏,往往会导致某些时间间隔的时空覆盖不完整,这就阻碍了对全球二氧化碳(CO2)浓度变化的准确表征,不足以支持不同精度要求的研究应用。针对这一问题,本文提出了一种新的多尺度固定秩克里格法,应用轨道碳观测站-2、轨道碳观测站-3和温室气体观测卫星的XCO2数据,在1°网格上生成2016年至2019年全球范围内长期日尺度柱平均干空气二氧化碳摩尔分数(XCO2)产品。实验结果表明,该数据集具有较高的时空分辨率和覆盖范围,经碳柱总量观测网络数据验证,可有效填补卫星观测数据的空白,交叉验证的R2=0.93,均方根误差=1.06 ppm。此外,我们分析了2016-2019年全球和中国XCO2的空间分布和季节变化特征,XCO2在空间上呈现明显的纬度梯度和季节周期性。所提出的方法为分析全球和区域尺度二氧化碳浓度的时空变化特征、研究碳源和碳汇建立了基础研究数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing global daily XCO2 at 1° × 1° spatial resolution from 2016 to 2019 with multisource satellite observation data
The multisource satellite observation data have been widely used in carbon cycle research owing to their long-term and large-scale characteristics. However, the sparse sampling density of satellite observation data often results in incomplete spatiotemporal coverage at certain time intervals, which hinders the accurate representation of global carbon dioxide (CO2) concentration variations and is inadequate for supporting research applications with different precision requirements. To address this issue, a new multiscale fixed rank kriging is proposed to generate long-term daily scale column-averaged dry-air mole fraction of CO2 (XCO2) products from 2016 to 2019 over the globe on grids of 1°, for which the XCO2 data from Orbiting Carbon Observatory-2, Orbiting Carbon Observatory-3, and Greenhouse gases Observing SATellite are applied. Experimental results show that the dataset has a high spatiotemporal resolution and coverage validated by the Total Carbon Column Observing Network data to effectively fill gaps in satellite observation data, with cross-validation of R2=0.93 and root mean square error = 1.06 ppm. Moreover, we analyze the spatial distribution and seasonal variation characteristics of global and Chinese XCO2 from 2016 to 2019, with XCO2 presenting an obvious latitudinal gradient and seasonal periodicity in space. The proposed method establishes a foundational research dataset for the analysis of spatiotemporal variation characteristics of CO2 concentration at global and regional scales, as well as investigations on carbon sources and sink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1