量化干旱导致的温度对臭氧消毒信用和溴酸盐控制的影响

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-04-05 DOI:10.1039/D4EW00042K
Bilal Abada, Ariel J. Atkinson and Eric C. Wert
{"title":"量化干旱导致的温度对臭氧消毒信用和溴酸盐控制的影响","authors":"Bilal Abada, Ariel J. Atkinson and Eric C. Wert","doi":"10.1039/D4EW00042K","DOIUrl":null,"url":null,"abstract":"<p >Climate change and drought can lead to unprecedented changes in surface water temperature requiring utilities to examine their ozone system's disinfection capability while minimizing bromate production. This pilot-scale study investigated temperature (15–30 °C) as a single/isolated variable affecting ozone operating performance (demand, decay rate, exposure (CT)) and the ability to achieve a <em>Cryptosporidium</em> log reduction value (LRV) of 0.5–1.5 logs, as defined by the United States Environmental Protection Agency (USEPA). When dosing 3.0 mg L<small><sup>−1</sup></small> of ozone into a surface water with 2.5 mg L<small><sup>−1</sup></small> of total organic carbon, an increase in temperature from 15 °C to 30 °C increased ozone demand in the dissolution zone from 1.0 mg L<small><sup>−1</sup></small> to 1.6 mg L<small><sup>−1</sup></small> (60%) and ozone decay rate from 0.07 min<small><sup>−1</sup></small> to 0.27 min<small><sup>−1</sup></small> (385%). Despite more rapid demand/decay, the required ozone dose to achieve an LRV of 1.5 logs remained at 2.4–2.8 mg L<small><sup>−1</sup></small> due to the reduction in USEPA's CT requirement at higher temperatures (9.35 mg min L<small><sup>−1</sup></small> at 15 °C <em>vs.</em> 2.31 mg min L<small><sup>−1</sup></small> at 30 °C). Bromate formation exceeded the USEPA maximum contaminant level of 10 μg L<small><sup>−1</sup></small> when ozone was dosed to achieve LRV &gt; 0.5 log at all temperature conditions. Chlorine–ammonium pretreatment (0.5 mg L<small><sup>−1</sup></small> Cl<small><sub>2</sub></small>, 0.1–0.5 mg L<small><sup>−1</sup></small> NH<small><sub>4</sub></small><small><sup>+</sup></small>-N) lowered bromate formation to &lt;5 μg L<small><sup>−1</sup></small> under ambient (80 μg L<small><sup>−1</sup></small>) and elevated (120 μg L<small><sup>−1</sup></small>) bromide concentrations at all temperatures. These results were applied to evaluate a full-scale ozone system designed to achieve an LRV of 1.5 logs if drought increases temperature from 13 °C to 26 °C. The study systematically examined the role of temperature on ozone system performance, which can assist utilities planning for future drought-driven changes.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00042k?page=search","citationCount":"0","resultStr":"{\"title\":\"Quantifying drought-driven temperature impacts on ozone disinfection credit and bromate control†\",\"authors\":\"Bilal Abada, Ariel J. Atkinson and Eric C. Wert\",\"doi\":\"10.1039/D4EW00042K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Climate change and drought can lead to unprecedented changes in surface water temperature requiring utilities to examine their ozone system's disinfection capability while minimizing bromate production. This pilot-scale study investigated temperature (15–30 °C) as a single/isolated variable affecting ozone operating performance (demand, decay rate, exposure (CT)) and the ability to achieve a <em>Cryptosporidium</em> log reduction value (LRV) of 0.5–1.5 logs, as defined by the United States Environmental Protection Agency (USEPA). When dosing 3.0 mg L<small><sup>−1</sup></small> of ozone into a surface water with 2.5 mg L<small><sup>−1</sup></small> of total organic carbon, an increase in temperature from 15 °C to 30 °C increased ozone demand in the dissolution zone from 1.0 mg L<small><sup>−1</sup></small> to 1.6 mg L<small><sup>−1</sup></small> (60%) and ozone decay rate from 0.07 min<small><sup>−1</sup></small> to 0.27 min<small><sup>−1</sup></small> (385%). Despite more rapid demand/decay, the required ozone dose to achieve an LRV of 1.5 logs remained at 2.4–2.8 mg L<small><sup>−1</sup></small> due to the reduction in USEPA's CT requirement at higher temperatures (9.35 mg min L<small><sup>−1</sup></small> at 15 °C <em>vs.</em> 2.31 mg min L<small><sup>−1</sup></small> at 30 °C). Bromate formation exceeded the USEPA maximum contaminant level of 10 μg L<small><sup>−1</sup></small> when ozone was dosed to achieve LRV &gt; 0.5 log at all temperature conditions. Chlorine–ammonium pretreatment (0.5 mg L<small><sup>−1</sup></small> Cl<small><sub>2</sub></small>, 0.1–0.5 mg L<small><sup>−1</sup></small> NH<small><sub>4</sub></small><small><sup>+</sup></small>-N) lowered bromate formation to &lt;5 μg L<small><sup>−1</sup></small> under ambient (80 μg L<small><sup>−1</sup></small>) and elevated (120 μg L<small><sup>−1</sup></small>) bromide concentrations at all temperatures. These results were applied to evaluate a full-scale ozone system designed to achieve an LRV of 1.5 logs if drought increases temperature from 13 °C to 26 °C. The study systematically examined the role of temperature on ozone system performance, which can assist utilities planning for future drought-driven changes.</p>\",\"PeriodicalId\":75,\"journal\":{\"name\":\"Environmental Science: Water Research & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00042k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Water Research & Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00042k\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00042k","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

气候变化和干旱会导致地表水温度发生前所未有的变化,这就要求公用事业部门在尽量减少溴酸盐产生的同时,检查臭氧系统的消毒能力。这项中试规模的研究将温度(15-30 °C)作为一个单一/独立的变量,对臭氧的运行性能(需求、衰减率、暴露(CT))以及实现美国环境保护局(USEPA)规定的 0.5-1.5 logs 的隐孢子虫对数减少值(LRV)的能力产生影响。向总有机碳含量为 2.5 毫克/升的地表水中添加 3.0 毫克/升的臭氧时,温度从 15 °C 升至 30 °C,溶解区的臭氧需求量从 1.0 毫克/升增至 1.6 毫克/升(60%),臭氧衰减率从 0.07 分钟/升增至 0.27 分钟/升(385%)。尽管需求/衰减速度更快,但实现 1.5 logs LRV 所需的臭氧剂量仍为 2.4-2.8 mg L-1,这是因为美国环保局的 CT 要求在较高温度下有所降低(15 °C 时为 9.35 mg min L-1 而 30 °C 时为 2.31 mg min L-1)。在所有温度条件下,当臭氧用量达到 LRV > 0.5 log 时,溴酸盐的形成超过了美国环保局规定的 10 μg L-1 的最大污染物含量。氯铵预处理(0.5 mg L-1 Cl2、0.1-0.5 mg L-1 NH4+-N)降低了溴酸盐的形成,在所有温度条件下,在环境(80 μg L-1)和升高(120 μg L-1)的溴化物浓度下,溴酸盐的形成均为 <5 μg L-1。这些结果被用于评估一个全面的臭氧系统,该系统的设计目的是在干旱将温度从 13 °C 提高到 26 °C 的情况下实现 1.5 logs 的 LRV。该研究系统地考察了温度对臭氧系统性能的影响,这有助于公用事业部门规划未来干旱引起的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying drought-driven temperature impacts on ozone disinfection credit and bromate control†

Climate change and drought can lead to unprecedented changes in surface water temperature requiring utilities to examine their ozone system's disinfection capability while minimizing bromate production. This pilot-scale study investigated temperature (15–30 °C) as a single/isolated variable affecting ozone operating performance (demand, decay rate, exposure (CT)) and the ability to achieve a Cryptosporidium log reduction value (LRV) of 0.5–1.5 logs, as defined by the United States Environmental Protection Agency (USEPA). When dosing 3.0 mg L−1 of ozone into a surface water with 2.5 mg L−1 of total organic carbon, an increase in temperature from 15 °C to 30 °C increased ozone demand in the dissolution zone from 1.0 mg L−1 to 1.6 mg L−1 (60%) and ozone decay rate from 0.07 min−1 to 0.27 min−1 (385%). Despite more rapid demand/decay, the required ozone dose to achieve an LRV of 1.5 logs remained at 2.4–2.8 mg L−1 due to the reduction in USEPA's CT requirement at higher temperatures (9.35 mg min L−1 at 15 °C vs. 2.31 mg min L−1 at 30 °C). Bromate formation exceeded the USEPA maximum contaminant level of 10 μg L−1 when ozone was dosed to achieve LRV > 0.5 log at all temperature conditions. Chlorine–ammonium pretreatment (0.5 mg L−1 Cl2, 0.1–0.5 mg L−1 NH4+-N) lowered bromate formation to <5 μg L−1 under ambient (80 μg L−1) and elevated (120 μg L−1) bromide concentrations at all temperatures. These results were applied to evaluate a full-scale ozone system designed to achieve an LRV of 1.5 logs if drought increases temperature from 13 °C to 26 °C. The study systematically examined the role of temperature on ozone system performance, which can assist utilities planning for future drought-driven changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover A comprehensive study on the physicochemical characteristics of faecal sludge from Septic Tanks and Single Pit Latrines facilities in a typical semi-urban Indian town: A Case Study of Rajasthan, India Lead ions (Pb2+) Electrochemical Sensors Based on Novel Schiff Base Ligands Concurrent Boron Removal from Reverse Osmosis Concentrated and Energy Production using Microbial Desalination Cell-Donnan Dialysis Hybrid System Investigation of the effect of Al2O3/water nanofluid on the performance of a thermoelectric cooler to harvest water from humid air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1