分析师报告的文字语调是否包含有价值的信息?韩国的证据*

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE Asia-Pacific Journal of Financial Studies Pub Date : 2024-04-04 DOI:10.1111/ajfs.12469
Su-Ji Cho, Ki-Kwang Lee, Cheol-Won Yang
{"title":"分析师报告的文字语调是否包含有价值的信息?韩国的证据*","authors":"Su-Ji Cho,&nbsp;Ki-Kwang Lee,&nbsp;Cheol-Won Yang","doi":"10.1111/ajfs.12469","DOIUrl":null,"url":null,"abstract":"<p>We investigate whether the text of analyst reports can provide additional information beyond the recommendation and target price. Positive and negative word lexicons are generated through an automated Bayesian learning method applied to Korean analyst reports spanning from 2016 to 2018. Then, the textual tone of an analyst report is quantified as the difference between the frequencies of positive and negative words in the text. The announcement returns of portfolios sorted by textual tone exhibit significant differences ranging from 1.14% to 2.82% within the same recommendation or target price revision group. Regression analysis also reveals significant association between the textual tone of analyst reports and stock announcement returns, even when controlling for the recommendation and target price. Notably, the text proves to be more informative in negative tones and within firms with limited analyst coverage. Our results indicate that textual analysis can unveil nuanced analyst opinions not captured by numerical information.</p>","PeriodicalId":8570,"journal":{"name":"Asia-Pacific Journal of Financial Studies","volume":"53 3","pages":"349-389"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does the Textual Tone of Analyst Reports Have Valuable Information? Korean Evidence*\",\"authors\":\"Su-Ji Cho,&nbsp;Ki-Kwang Lee,&nbsp;Cheol-Won Yang\",\"doi\":\"10.1111/ajfs.12469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate whether the text of analyst reports can provide additional information beyond the recommendation and target price. Positive and negative word lexicons are generated through an automated Bayesian learning method applied to Korean analyst reports spanning from 2016 to 2018. Then, the textual tone of an analyst report is quantified as the difference between the frequencies of positive and negative words in the text. The announcement returns of portfolios sorted by textual tone exhibit significant differences ranging from 1.14% to 2.82% within the same recommendation or target price revision group. Regression analysis also reveals significant association between the textual tone of analyst reports and stock announcement returns, even when controlling for the recommendation and target price. Notably, the text proves to be more informative in negative tones and within firms with limited analyst coverage. Our results indicate that textual analysis can unveil nuanced analyst opinions not captured by numerical information.</p>\",\"PeriodicalId\":8570,\"journal\":{\"name\":\"Asia-Pacific Journal of Financial Studies\",\"volume\":\"53 3\",\"pages\":\"349-389\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Financial Studies\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ajfs.12469\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Financial Studies","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ajfs.12469","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了分析师报告的文本是否能提供建议和目标价格之外的额外信息。通过应用于 2016 年至 2018 年韩国分析师报告的自动贝叶斯学习方法,生成了正面和负面词汇词典。然后,将分析师报告的文本基调量化为文本中积极词和消极词频率的差异。按文本语气排序的投资组合的公告收益率在同一建议或目标价修正组内呈现出 1.14% 至 2.82% 的显著差异。回归分析还显示,即使控制了推荐值和目标价,分析师报告的文字基调与股票公告收益率之间也存在显著关联。值得注意的是,在分析师覆盖范围有限的公司中,负面语气的文本信息量更大。我们的研究结果表明,文本分析可以揭示数字信息无法捕捉到的细微的分析师观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does the Textual Tone of Analyst Reports Have Valuable Information? Korean Evidence*

We investigate whether the text of analyst reports can provide additional information beyond the recommendation and target price. Positive and negative word lexicons are generated through an automated Bayesian learning method applied to Korean analyst reports spanning from 2016 to 2018. Then, the textual tone of an analyst report is quantified as the difference between the frequencies of positive and negative words in the text. The announcement returns of portfolios sorted by textual tone exhibit significant differences ranging from 1.14% to 2.82% within the same recommendation or target price revision group. Regression analysis also reveals significant association between the textual tone of analyst reports and stock announcement returns, even when controlling for the recommendation and target price. Notably, the text proves to be more informative in negative tones and within firms with limited analyst coverage. Our results indicate that textual analysis can unveil nuanced analyst opinions not captured by numerical information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
20.00%
发文量
36
期刊最新文献
Issue Information Acknowledgement Issue Information Acknowledgement Media Attention and Labor Investment Efficiency*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1