Emilie A. Chapeau, Laurent Sansregret, Giorgio G. Galli, Patrick Chène, Markus Wartmann, Thanos P. Mourikis, Patricia Jaaks, Sabrina Baltschukat, Ines A. M. Barbosa, Daniel Bauer, Saskia M. Brachmann, Clara Delaunay, Claire Estadieu, Jason E. Faris, Pascal Furet, Stefanie Harlfinger, Andreas Hueber, Eloísa Jiménez Núñez, David P. Kodack, Emeline Mandon, Typhaine Martin, Yannick Mesrouze, Vincent Romanet, Clemens Scheufler, Holger Sellner, Christelle Stamm, Dario Sterker, Luca Tordella, Francesco Hofmann, Nicolas Soldermann, Tobias Schmelzle
{"title":"IAG933 对 YAP-TEAD 界面的直接和选择性药理学破坏可抑制 Hippo 依赖性癌症和 RAS-MAPK 改变的癌症","authors":"Emilie A. Chapeau, Laurent Sansregret, Giorgio G. Galli, Patrick Chène, Markus Wartmann, Thanos P. Mourikis, Patricia Jaaks, Sabrina Baltschukat, Ines A. M. Barbosa, Daniel Bauer, Saskia M. Brachmann, Clara Delaunay, Claire Estadieu, Jason E. Faris, Pascal Furet, Stefanie Harlfinger, Andreas Hueber, Eloísa Jiménez Núñez, David P. Kodack, Emeline Mandon, Typhaine Martin, Yannick Mesrouze, Vincent Romanet, Clemens Scheufler, Holger Sellner, Christelle Stamm, Dario Sterker, Luca Tordella, Francesco Hofmann, Nicolas Soldermann, Tobias Schmelzle","doi":"10.1038/s43018-024-00754-9","DOIUrl":null,"url":null,"abstract":"The YAP–TEAD protein–protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP–TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP–TEAD protein–protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway. Chapeau et al. develop a nonallosteric inhibitor of the interaction between YAP and all four TEAD proteins. Treatment with the inhibitor, either as monotherapy or in combination with other treatment modalities, leads to induction of cell death in several in vivo cancer models.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":"5 7","pages":"1102-1120"},"PeriodicalIF":23.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43018-024-00754-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers\",\"authors\":\"Emilie A. Chapeau, Laurent Sansregret, Giorgio G. Galli, Patrick Chène, Markus Wartmann, Thanos P. Mourikis, Patricia Jaaks, Sabrina Baltschukat, Ines A. M. Barbosa, Daniel Bauer, Saskia M. Brachmann, Clara Delaunay, Claire Estadieu, Jason E. Faris, Pascal Furet, Stefanie Harlfinger, Andreas Hueber, Eloísa Jiménez Núñez, David P. Kodack, Emeline Mandon, Typhaine Martin, Yannick Mesrouze, Vincent Romanet, Clemens Scheufler, Holger Sellner, Christelle Stamm, Dario Sterker, Luca Tordella, Francesco Hofmann, Nicolas Soldermann, Tobias Schmelzle\",\"doi\":\"10.1038/s43018-024-00754-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The YAP–TEAD protein–protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP–TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP–TEAD protein–protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway. Chapeau et al. develop a nonallosteric inhibitor of the interaction between YAP and all four TEAD proteins. Treatment with the inhibitor, either as monotherapy or in combination with other treatment modalities, leads to induction of cell death in several in vivo cancer models.\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\"5 7\",\"pages\":\"1102-1120\"},\"PeriodicalIF\":23.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43018-024-00754-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s43018-024-00754-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s43018-024-00754-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers
The YAP–TEAD protein–protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP–TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP–TEAD protein–protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway. Chapeau et al. develop a nonallosteric inhibitor of the interaction between YAP and all four TEAD proteins. Treatment with the inhibitor, either as monotherapy or in combination with other treatment modalities, leads to induction of cell death in several in vivo cancer models.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.